|
|
|
| | | | | |
|
|
|
|
|
Variably Skewed Brownian Motion
|
Martin Barlow, University of British Columbia Krzysztof Burdzy, University of Washington Haya Kaspi, Technion Institute Avi Mandelbaum, Technion Institute |
Abstract
Given a standard Brownian motion $B$, we show that the equation
X_t = x_0 + B_t + beta(L_t^X), t geq 0,
has a unique strong solution $X$. Here $L^X$ is the symmetric local time of
$X$ at $0$, and $beta$ is a given differentiable function with
$beta(0) = 0$, whose derivative is always in $(-1,1)$. For a linear
function $beta$, the
solution is the familiar skew Brownian motion.
|
Full text: PDF
Pages: 57-66
Published on: March 1, 2000
|
Bibliography
- [HS]
Harrison, J.M. and Shepp, L.A. (1981), On skew Brownian
motion, Ann. Probab. 9 (2), 309-313.
Math. Review 82j:60144
- [IM] Itô, K. and McKean, H.P. (1965), Diffusion Processes and
Their Sample Paths, Springer, New York.
Math. Review 49:9963
-
[KM1] Kaspi, H. and Mandelbaum, A. (1995), Lévy bandits: Multi-
armed bandits driven by Lévy processes, Ann. Appl. Probab. 5 (2),
541-565.
Math. Review 96i:60079
- [KM2] Kaspi, H. and Mandelbaum, A. (1998), Multi-armed bandits in
discrete and continuous time. Ann. Appl. Probab. 8 (4), 1270-1290.
Math. Review 2000c:90110
- [KP] Kurtz, T.G. and Protter, P. (1991), Weak limit
theorems for stochastic integrals and stochastic differential equations.
Ann. Probab. 19 (3), 1035-1070.
Math. Review 92k:60130
- [JM] Jacod, J. and Memin J. (1981), Weak and strong solutions
of stochastic differential equations: Existence and stability,
Stochastic integrals, Lecture Notes in Mathematics
851 169-212, Springer, Berlin.
Math. Review 83h:60062
- [M] Mandelbaum, A. (1987), Continuous multi-armed bandits and
multiparameter processes, Ann. Probab. 15, 1527-1556.
Math. Review 89b:62169
- [RY] Revuz, D. and Yor, M. (1991), Continuous Martingales and
Brownian Motion, Springer Verlag, Berlin, Heidelberg, New York.
Math. Review 92d:60053
- [W1] Walsh, J.B. (1978), A diffusion with discontinuous local time,
Temps Locaux Asterisque, 52--53, 37-45.
Math. Review 81b:60042
- [W2] Walsh, J.B. (1981), Optional increasing paths, Colloque ENST-
CNET, Lecture Notes in Math. 863, 172-201, Springer, Berlin.
Math. Review 82k:60101
- [We] Weinryb, S. (1983), Etude d'une equation différentielle
stochastique avec temps local, Séminaire de Probabilités XVII,
Lecture Notes in Mathematics, 986, 72-77, Springer, Berlin.
Math. Review 86c:60091
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|