|
|
|
| | | | | |
|
|
|
|
|
Entropy Estimate for k-Monotone Functions via Small Ball Probability of Integrated Brownian Motions
|
Fuchang Gao, University of Idaho |
Abstract
Metric entropy of the class of probability distribution functions
on [0,1] with a k-monotone density is studied through its
connection with the small ball probability of k-times integrated
Brownian motions.
|
Full text: PDF
Pages: 121-130
Published on: March 4, 2008
|
Bibliography
-
Artstein, S.; Milman, V.; Szarek, S.
Duality of metric entropy.
Ann. of Math.
159 (2004), 1313--1328.
Math. Review 2005h:47037
- Balabdaoui, F.; Wellner, J. A. Estimation of a
k.monotone density, part 1: characterizations, consistency, and
minimax lower bounds. Technical Report 459 (2004), University of
Washington Department of Statistics. Math. Review not available.
-
Birman, M. v S.; Solomjak, M. Z. Piecewise polynomial approximations
of functions of classes $Wsb{p}{}sp{alpha }$. (Russian) Mat.
Sb. (N.S.) 73(1967), no. 115, 331--355.
Math. Review 36 #576
-
Blei, R.; Gao, F.; Li, W.V. Metric entropy of high dimensional distributions. Proc. Amer. Math. Soc. 135 (2007),
no. 12, 4009--4018 (electronic). Math. Review number not available
-
Chen, X.; Li, W. V. Quadratic functionals and small ball
probabilities for the $m$-fold integrated Brownian motion.
Ann. Probab. 31 (2003), no. 2, 1052--1077.
Math. Review 2004j:60078
-
Carl, B.; Stephani, I. Entropy, Compactness and
Approximation of Operators, Cambridge University Press, Cambridge. (1990).
Math. Review 92e:47002
-
Edmunds, D. E.; Triebel, H. Function
Spaces, Entropy Numbers and Differential Operators, Cambridge
Univ. Press. Cambridge. (1996).
Math. Review 97h:46045
-
Gao, F.; Hannig, J.; Torcaso, F. Integrated Brownian motions
and exact $Lsb 2$-small balls. Ann. Probab. 31 (2003), no. 3, 1320--1337.
Math. Review 2004k:60104
-
Gao, F.; Li, W. V. Logarithmic level comparison for
small deviation probabilities. J. Theoret. Probab. 19 (2006).
no. 3, 535--556.
Math. Review 2008b:60074
-
Groeneboom, P. Estimating a monotone density.
Proceedings of the Berkeley Conference in Honor of Jerzy Neyman
and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), 539--555,
Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, CA.
Math. Review 87i:62076
-
Kolmogorov, A.N.; Tihomirov, V.M.
$eps$-entropy and $eps$-capacity of sets in function spaces,
Uspehi Mat. Nauk. 14 (1959), 3-86. English transl. in
Amer. Math. Soc. Transl. 17 (1961), 277-364.
Math. Review 22 #2890
-
Kuelbs, J.; Li, W.V.
Metric entropy and the small ball problem for Gaussian measures.
J. Funct. Anal. 116(1993), 133-157.
Math. Review 94j:60078
-
Li, W. V. A Gaussian correlation inequality and its
applications to small ball probabilities. Electron. Comm.
Probab. 4(1999), 111--118 (electronic).
Math. Review 2001j:60074
-
Li, W.V.; Linde, W.
Approximation, metric entropy and small ball estimates for Gaussian
measures. Ann. Probab. 27(1999), 1556-1578.
Math. Review 2001c:60059
-
Lorentz, G.
Metric entropy and approximation. Bull. Amer. Math. Soc. 72(1966), 903--937.
Math. Review 34 #3173
-
Schechtman, G.; Schlumprecht, Th.; Zinn, J.
On the Gaussian measure of the intersection. Ann.
Probab. 26(1998), no. 1, 346--357.
Math. Review 99c:60032
-
Tomczak-Jaegermann, N. Dualit'{e} des nombres d'entropie pour des op'{e}rateurs `{a} valeurs dans un espace
de Hilbert. (French) C. R. Acad. Sci. Paris SšŠr. I Math. 305(1987), no. 7, 299--301.
Math. Review 89c:47027
-
Van de Geer, S. The entropy bound for
monotone functions. Report 91-10. University of Leiden. (1991). Math. Review not available.
-
Van der Vaart, A.; Wellner, J.
Weak convergence and empirical processes. With applications
to statistics. Springer Series in Statistics. Springer-Verlag,
New York. (1996).
Math. Review 97g:60035
-
Williamson, R. E. Multiply monotone functions and their Laplace transforms. Duke Math. J. 23(1956), 189--207.
Math. Review 17,1061d
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|