![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A Converse Comparison Theorem for BSDEs and Related Properties of g-Expectation
|
Philippe Briand, Université Rennes 1 François Coquet, Université Rennes 1 Ying Hu, Université Rennes 1 Jean Mémin, Université Rennes 1 Shige Peng, Shandong University |
Abstract
In [1], Z. Chen proved that, if for each
terminal condition $xi$, the solution of the BSDE associated to the
standard parameter $(xi, g_1)$ is equal at time $t=0$ to the
solution of the BSDE associated to $(xi, g_2)$ then we must
have $g_1equiv g_2$. This result yields a natural question:
what happens in the case of an inequality in place of an equality?
In this paper, we try to investigate this question and we prove
some properties of ``g-expectation'', notion introduced by
S. Peng in [8].
|
Full text: PDF
Pages: 101-117
Published on: May 23, 2000
|
Bibliography
-
Z. Chen, A property of backward stochastic differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 483--488. Math. Review 99i:60116.
-
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance 7 (1997), no. 1, 1--71; Math. Review 98d:90030.
-
H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in Ecole d'e´ete´ de probabilités de Saint-Flour, XII---1982, 143--303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. Math. Review 87m:60127.
-
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equations, Systems Control Lett. 14 (1990), no. 1, 55--61. Math. Review 91e:60171.
-
E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic partial differential equations and their applications (Charlotte, NC, 1991), 200--217, Lecture Notes in Control and
Inform. Sci., 176, Springer, Berlin, 1992. Math. Review 93k:60157.
-
S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep. 37 (1991), no. 1-2, 61--74. Math. Review 93a:35159.
-
S. Peng, Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 30 (1992), no. 2, 284--304; Math. Review 93e:60123.
-
S. Peng, Backward SDE and related g-expectation, in Backward stochastic differential equations, 141--159, Pitman res. Notes Math. Ser., 364, Longman, Harlow, 1997. Math. Review number not vailable.
-
S. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob--Meyer's type, Probab. Theory Related Fields 113 (1999), no. 4, 473--499. Math. Review 1717527.
-
F. Pradeilles, Wavefront propagation for reaction-diffusion systems and backward SDEs, Ann. Probab. 26 (1998), no. 4, 1575--1613. Math. Review 2000e:35103.
-
R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1970. Math. Review 43#445.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|