 |
|
|
| | | | | |
|
|
|
|
|
Support of a Marcus equation in Dimension 1
|
Thomas Simon, Humboldt-Universitat zu Berlin |
Abstract
The purpose of this note is to give a support theorem in the Skorohod space
for a one-dimensional Marcus differential equation driven by a Lévy process,
without any assumption on the latter. We also give a criterion ensuring that
the support of the equation is the whole Skorohod space. This improves, in
dimension 1, a result of H. Kunita.
|
Full text: PDF
Pages: 149-157
Published on: September 7, 2000
|
Bibliography
-
D. Applebaum and H. Kunita. Lévy flows on manifolds and Lévy processes on Lie
groups, J. Math. Kyoto. Univ. 33, pages 1103-1123, 1993.
Math. Reviews link
-
H. Doss. Liens entre équations différentielles stochastiques et ordinaires,
Ann. I.H.P. Prob. Stat. XIII, pages 99-125, 1977.
Math. Reviews link
-
M. Errami, F. Russo and P. Vallois. Itô formula for ${cal C}^{1, lambda}$
functions of a càdlàg process and related calculus. Prépublication de
l'Institut Élie Cartan, Nancy, 1999.
-
N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion
processes. North-Holland, 1989.
Math. Reviews link
-
J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes.
Springer, 1987.
Math. Reviews link
-
H. Kunita. Stochastic flows with self-similar properties.
In Davies (ed.) et al., Stochastic Analysis and applications. Proceedings
of the 5th Grenyog symposium, July 9-14, 1995,
pages 286-300. World Scientific Publishing, Singapore, 1996.
Math. Reviews link
-
H. Kunita. Canonical stochastic differential equations and their supports.
In Crauel (ed.) et al., Stochastic dynamics. Conference on Random
dynamical systems, Bremen, Germany, April 28-May 2, 1997,
pages 283-304. Springer, New York, 1999.
Math. Reviews link
-
H. Kunita and J. P. Oh. Existence of density for canonical differential
equations with jumps. Preprint, 1999.
-
T. G. Kurtz, E. Pardoux and Ph. Protter. Stratonovitch stochastic differential
equations with respect to general semimartingales. Ann. I.H.P. Prob. Stat.
31, pages 351-377, 1995.
Math. Reviews link
-
S. I. Marcus. Modeling and analysis of stochastic differential
equations driven by point processes. I.E.E.E. Trans. Inf. Theory
24, pages 164-172, 1978.
Math. Reviews link
-
S. I. Marcus. Modeling and approximation of stochastic differential
equations driven by semimartingales. Stochastics
4, pages 223-245, 1981.
Math. Reviews link
-
Th. Simon. Support theorem for jump processes. Stochastic Processes
and their Applications 89, pages 1-30, 2000.
Math. Reviews number not available.
-
Th. Simon. Sur les petites déviations d'un processus de Lévy. To appear in
Potential Analysis.
-
Th. Simon. Über eine nichtlineare Itô-Differentialgleichung. In preparation.
-
D. W. Stroock and S. R. S. Varadhan. On the support of diffusion processes
with applications to the strong maximum principle. In Proc. 6th Berkeley
Symp. Math. Stat. Prob. III, pages 333-359. Univ. California Press,
Berkeley, 1972.
Math. Reviews link
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|