![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Aldous-Shields model revisited with application to cellular ageing
|
Katharina Best, University of Freiburg Peter Pfaffelhuber, University of Freiburg |
Abstract
In Aldous and Shields (1988) a model for a rooted, growing random binary tree with edge lengths 1 was presented. For some $c>0$, an external vertex splits at rate $c^{-i}$ (and becomes internal) if its distance from the root (depth) is $i$. We reanalyse the tree profile for $c>1$, i.e. the numbers of external vertices in depth $i=1,2,...$. Our main result are concrete formulas for the
expectation and covariance-structure of the profile. In addition, we present the application of the model to cellular ageing. Here, we
say that nodes in depth $h+1$ are senescent, i.e. do not split. We obtain a limit result for the proportion of non-senesced vertices
for large $h$.
|
Full text: PDF
Pages: 475-488
Published on: October 19, 2010
|
Bibliography
- D. Aldous, P. Shields. A diffusion limit for a class of randomly-growing binary trees. Probab. Theory Related Fields 79(4) (1988), 509-542. MR0966174 (90k:60052)
- T. Antal, K.B. Blagoev, S.A. Trugman, S. Redner. Aging and immortality in a cell proliferation model. J. Theor. Biol. 248(3) (2007), 411-417.
- O. Arino, M. Kimmel, G.B. Webb. Mathematical modeling of the loss of telomere sequences. J. Theor. Biol. 177(1) (1995), 45-57.
- Arkus, Natalie. A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss. J. Theoret. Biol. 235(1) (2005), 13-32. MR2139011
- M.A. Baxter, R.F. Wynn, S.N. Jowitt, J.E. Wraith, L.J. Fairbairn, I. Bellantuono. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5) (2004), 675-682.
- N. Berestycki. Recent progress in coalescent theory. Ensaios Matemáticos [Mathematical Surveys], 16. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. MR2574323
- E.H. Blackburn. Telomere states and cell fates. Nature 408 (2000), 53-56.
- M. Bonab, K. Alimoghaddam, F. Talebian, S. Ghaffari, A. Ghavamzadeh, B. Nikbin. Aging of mesenchymal stem cell in vitro. BMC Cell Biology 7(1) (2006), 14.
- D.S. Dean; S.N. Majumdar Phase transition in a generalized Eden growth model on a tree. J. Stat. Phys. 124(6) (2006), 1351-1376. MR2266447 (2008a:82027)
- M. Drmota. Random trees. An interplay between combinatorics and probability. Springer, Wien, NewYork, Vienna, 2009. MR2484382 (2010i:05003)
- J. Dyson; E. Sánchez; R. Villella-Bressan; G.F. Webb Stabilization of telomeres in nonlinear models of proliferating cell lines. J. Theoret. Biol. 244(3) (2007), 400-408. MR2293122 (2007j:92017)
- J. Dyson; R. Villella-Bressan; G.F. Webb Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Deterministic and stochastic modeling of biointeraction (West Lafayette, IN, 2000). Math. Biosci. 177/178 (2002), 73-83. MR1923804 (2003g:92026)
- S.N. Evans, D. Steinsaltz. Damage segregation at fissioning may increase growth rates: A superprocess model.. Theo. Pop. Biol. Biol. 71(4) (2007), 473-490.
- J. Felsenstein. Inferring Phylogenies. Palgrave Macmillan, 2002.
- N. Gupta, R. Taneja, A. Pandey, M. Mukesh, H. Singh, S.C. Gupta. Replicative senescence, telomere shortening and cell proliferation rate in gaddi goat's skin fibroblast cell line. Cell Biol. Int. 31 (2007), 1257-1264.
- L. Hayflick, P.S. Moorhead. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 (1961), 585-621.
- J.Z. Levy, R.C. Allsopp, A.B. Futcher, C.W. Greider, C.B. Harley. Telomere end-replication problem and cell aging. J. Mol. Biol. 225(4) (1992), 951-960.
- R. Neininger. Stochastische Analyse von Algorithmen, Fixpunktgleichungen und ideale Metriken. Habilitationsschrift, University of Frankfurt (2004).
- P. Olofsson, M. Kimmel. Stochastic models of telomere shortening. Math. Biosci. 158(1) (1999), 75-92. MR1681442
- A.M. Olovnikov. Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol. 31 (1996), 443-448.
- R.D. Portugal, M.G. Land, B.F. Svaiter. A computational model for telomere-dependent cell-replicative aging. BioSystems 91(1) (2008), 262-267.
- C.J. Proctor, T.B. Kirkwood. Modelling cellular senescence as a result of telomere state. Aging Cell 2(3) (2003), 151-157.
- I.A. Rodriguez-Brenes, C.S. Peskin. Quantitative theory of telomere length regulation and cellular senescence. Proc. Natl. Acad. Sci. 107(12) (2010), 5387-5392.
- J.W. Shay, W.E. Wright. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26 (2005), 867-874.
- G. Vogel, E. Pennisi, E. Blackburn, C. Greider, J. Szostak. Physiology Nobel. U.S. Researchers recognized for work on telomeres. Science 326 (2009), 212-213.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|