|
|
|
| | | | | |
|
|
|
|
|
Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion
|
Jean-Christophe Breton, Laboratoire Mathématiques, Image et Applications Ivan Nourdin, Laboratoire de Probabilités et Modèles Aléatoires |
Abstract
Let q≥2 be a positive integer, B be a
fractional Brownian motion with Hurst index H∈(0,1), Z be an Hermite random variable of index q,
and Hq denote the q-th Hermite polynomial. For
any n≥1, set Vn=∑0≤k≤n-1 Hq(Bk+1-Bk).
The
aim of the current paper is to derive, in the case when the Hurst index
verifies H>1-1/(2q), an upper bound for the total variation
distance between the laws of Zn and of Z, where Zn stands
for the correct renormalization of Vn which converges in
distribution towards Z. Our results should be compared with those
obtained recently by Nourdin and Peccati (2007) in the case
where H<1-1/(2q), corresponding to the case where one has normal
approximation.
|
Full text: PDF
Pages: 482-493
Published on: September 26, 2008
|
Bibliography
- A. Begyn. Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli 13 (2007), 712--753. Math. Review 2348748
- J.-C. Breton. Convergence in variation of the joint laws of multiple Wiener-Itô integrals. Stat. Probab. Letters 76 (2006), 1904--1913. Math. Review 2271186
- P. Breuer and P. Major. Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983), 425--441. Math. Review 0716933
- J.-F. Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Statist. Infer. Stoch. 4 (2001), 199-227. Math. Review 1856174
- Y. A. Davydov and G. V. Martynova. Limit behavior of multiple stochastic integral. Statistics and control of random process. Preila, Nauka, Moscow (1987), 55--57 (in Russian). Math. Review 1079335
- R. L. Dobrushin and P. Major. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. verw. Gebiete 50 (1979), 27--52. Math. Review 0550122
- L. Giraitis and D. Surgailis. CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1985), 191--212.Math. Review 0799146
- J. Istas and G. Lang. Quadratic variations and estimators of the H"older index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), 407-436. Math. Review 1465796
- I. Nourdin. Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. To appear in: Ann. Probab.
- I. Nourdin, D. Nualart and C.A. Tudor. Central and non-central
limit theorems for weighted power variations of fractional Brownian
motion. Preprint.
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. To appear in: Probab. Th. Related Fields.
- D. Nualart. The Malliavin Calculus and Related Topics. Springer Verlag. Second edition, 2006. Math. Review 2200233
- D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003), 3-39. Math. Review 2037156
- M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. verw. Gebiete 50 (1979), 53-83. Math. Review 0550123
- C.A. Tudor and F. Viens.Variations and estimators for the selfsimilarity order through Malliavin calculus. Preprint.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|