A Bound for the Distribution of the Hitting Time of Arbitrary Sets by Random Walk
Antal A Jarai, Carleton University, Canada Harry Kesten, Cornell University
Abstract
We consider a random walk $S_n = sum_{i=1}^n X_i$ with
i.i.d. $X_i$. We assume that the $X_i$ take values in $Bbb Z^d$,
have bounded support and zero mean. For $A subset Bbb Z^d, A ne
emptyset$ we
define $tau_A = inf{n ge 0: S_n in A}$. We prove that there
exists a constant $C$, depending on the common distribution of the
$X_i$ and $d$ only, such that $sup_{emptyset ne A subset Bbb Z^d}
P{tau_A =n} le C/n, n ge 1$.
S.R. Athreya and A.A. Járai.
Infinite volume limit for the stationary distribution of Abelian
sandpile models.
Commun. Math. Phys.249 (2004), 197-213.
Math. Review 2077255
H. Dinges.
Eine kombinatorische Überlegung und ihre maßtheoretische
Erweiterung.
Z. Wahrsch. verw. Gebiete1 (1963), 278-287.
Math. Review 28:2577
A.A. Járai and F. Redig.
Infinite volume limits of high-dimensional sandpile models.
Preprint (2004). http://arxiv.org/abs/math.PR/0408060.
Math. Review number not available.
H. Kesten and V. Sidoravicius.
Branching random walk with catalysts.
Elec. J. Probab.8 (2003), paper #6.
Math. Review 2003m:60280
F. Spitzer.
Principles of random walk.
Second edition. Graduate Texts in Mathematics. 34 (2001)
Springer Verlag.
Math. Review 52:9383