|
|
|
| | | | | |
|
|
|
|
|
A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree
|
Alex Iksanov, National Taras Shevchenko University of Kiev Martin Möhle, University of Tuebingen |
Abstract
We present a short probabilistic proof of a weak convergence result for the number of cuts needed to isolate the root of a random recursive tree. The proof is based on a coupling related to a certain random walk.
|
Full text: PDF
Pages: 28-35
Published on: February 28, 2007
|
Bibliography
- E. Bolthausen, A.-S. Sznitman.
On Ruelle's probability cascades and an abstract cavity method.
Comm. Math. Phys. 197 (1998), 247-276.
Math. Review 99k:60244
- M. Drmota, A. Iksanov, M. Möhle, and U. Rösler.
Asymptotic results about the total branch length of the Bolthausen-Sznitman coalescent.
Stoch. Process. Appl. 117 (2007), to appear.
- M. Drmota, A. Iksanov, M. Möhle, and U. Rösler.
A limiting distribution for the number of cuts needed to
isolate the root of a random recursive tree. (2006), Preprint, submitted
to Random Structures Algorithms
- K.B. Erickson.
Strong renewal theorems with infinite mean.
Trans. Amer. Math. Soc. 151 (1970), 263-291.
Math. Review 42 #3873
- J.L. Geluk and L. De Haan. Stable probability distributions
and their domains of attraction: a direct approach.
Probab. Math. Statist. 20 (2000), 169-188.
Math. Review 2001g:60031
- K. Hinderer and H. Walk.
Anwendung von Erneuerungstheoremen und Taubersätzen für eine
Verallgemeinerung der Erneuerungsprozesse.
Math. Z. 126 (1972), 95-115.
Math. Review 45 #9400
- S. Janson.
Random records and cuttings in complete binary trees. In:
Mathematics and Computer Science III (2004),
Birkhäuser, Basel, pp. 241-253.
Math. Review 2005i:05034
- S. Janson.
Random cutting and records in deterministic and random trees.
Random Structures Algorithm 29 (2006), 139-179.
Math. Review in process
- A. Meir and J.W. Moon. Cutting down recursive trees.
Math. Biosci. 21 (1974), 173-181.
Math. Review number not available.
Zentralblatt MATH 0288.05102
- M. Möhle. Convergence results for compound Poisson
distributions and applications to the standard Luria-Delbrück
distribution.
J. Appl. Probab. 42 (2005), 620-631.
Math. Review 2006e:60032
- A. Panholzer. Destruction of recursive trees. In:
Mathematics and Computer Science III (2004),
Birkhäuser, Basel, pp. 267-280.
Math. Review 2005e:60026
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|