|
|
|
| | | | | |
|
|
|
|
|
Sharp estimates for the convergence of the density of the Euler scheme in small time
|
Emmanuel Gobet, Laboratoire Jean Kuntzmann Université de Grenoble Céline Labart, INRIA Paris Rocquencourt |
Abstract
In this work, we approximate a diffusion process by its Euler scheme and we study the convergence of the density of the marginal laws. We improve previous estimates especially for small time.
|
Full text: PDF
Pages: 352-363
Published on: June 24, 2008
|
Bibliography
- Aronson D.G., 1967. Bounds for the fundamental solution of a parabolic
equation. Bulletin of the American Mathematical Society, 73, 890-903. Math. Review 36 #534
- Bally, V., Talay, D., 1996. The law of Euler scheme for stochastic
differential equations: convergence rate of the density. Monte
Carlo Methods Appl., 2(2), 93-128. Math. Review 97k:60157
- Friedman A., 1964. Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J. Math. Review 31 #6062
- Guyon J., 2006. Euler schemes and tempered distributions. Stochastic Processes
and their Applications, 116, 877-904. Math. Review 2007k:60217
- Konakov V., Mammen E., 2002. Edgeworth type expansions for Euler schemes for
stochastic differential equations. Monte Carlo Methods Appl,
8(3), 271-285. Math. Review 2004e:60098
- Kusuoka S. Stroock D., 1984. Applications to the Malliavin calculus I. Stochastic Analysis, Proceeding of the Taniguchi
International Symposium on Katata and Kyoto
1982. Kinokuniya, Tokyo, Itô K. Ed, 271-306. Math. Review 86k:60100a
- Labart C., 2007. PhD Thesis, Ecole Polytechnique, Paris. Available at http://pastel.paristech.org/3086/
- Nualart D., 2006. Malliavin Calculus and Related
Topics (2nd Edition). Springer-Verlag, New York. Math. Review 2006j:60004
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|