|
|
|
| | | | | |
|
|
|
|
|
Exact Convergence Rate for the Maximum of Standardized Gaussian Increments
|
Zakhar Kabluchko, Goettingen University Axel Munk, Goettingen University |
Abstract
We prove an almost sure limit theorem on the exact convergence rate of the maximum of standardized gaussian random walk increments. This gives a more precise version of Shao's theorem ( Shao, Q.-M., 1995.
On a conjecture of Révész. Proc. Amer. Math. Soc. 123, 575-582 ) in the gaussian case.
|
Full text: PDF
Pages: 302-310
Published on: June 17, 2008
|
Bibliography
-
J. M. P. Albin
On the upper and lower classes for a stationary Gaussian stochastic process.
Ann. Probab. 22(1994), 77-93.
Math. Review 95e:60038
-
L. Boysen, A. Kempe, A. Munk, V. Liebscher, O. Wittich.
Consistencies and rates of convergence of jump penalized least squares estimators.
Ann. Statist. (2007), to appear.
-
H. P. Chan, T. L. Lai.
Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary
crossing probabilities of sums of random variables with multidimensional indices.
Ann. Probab. 34(2006), 80-121.
Math. Review 2006k:60088
-
K.L. Chung, P. Erdös, T. Sirao.
On the Lipschitz's condition for Brownian motion.
J. Math. Soc. Japan 11(1959), 263-274.
Math. Review 22:12602
-
P.L. Davies, A. Kovac.
Local extremes, runs, strings and multiresolution.
Ann. Statist. 29(2001), 1-65.
Math. Review 2002c:62067
-
P. Deheuvels, L. Devroye. Limit laws of Erdös-Rényi-Shepp type.
Ann. Probab. 15(1987), 1363-1386.
Math. Review 88f:60055
-
P. Deheuvels, L. Devroye, J. Lynch.
Exact convergence rate in the limit theorems of Erdös-Rényi and Shepp.
Ann. Probab. 14(1986), 209-223.
Math. Review 87d:60032
-
L. Dümbgen, V.G. Spokoiny.
Multiscale testing of qualitative hypotheses.
Ann. Statist. 29(2001), 124-152.
Math. Review 2002j:62064
-
Z. Kabluchko.
Extreme-value analysis of standardized Gaussian increments (2007). Not published.
Available at http://www.arxiv.org/abs/0706.1849
-
M.R. Leadbetter, G. Lindgren, H. Rootzén.
Extremes and related properties of random sequences and processes.
Springer Series in Statistics (1983). New York-Heidelberg-Berlin: Springer-Verlag.
Math. Review 84h:60050
-
P.K. Pathak, C. Qualls.
A law of iterated logarithm for stationary Gaussian processes.
Trans. Amer. Math. Soc. 181(1973), 185-193.
Math. Review 47:9703
-
J. Pickands.
An iterated logarithm law for the maximum in a stationary Gaussian sequence.
Z. Wahrscheinlichkeitstheorie verw. Geb. 12(1969), 344-353.
Math. Review 40:5003
-
P. Révész.
On the increments of Wiener and related processes.
Ann. Probab. 10(1982), 613-622.
Math. Review 83i:60048
-
Q.-M. Shao.
On a conjecture of Révész.
Proc. Amer. Math. Soc. 123(1995), 575-582.
Math. Review 95c:60031
-
D. Siegmund, E. S. Venkatraman.
Using the generalized likelihood ratio statistic for sequential detection of a change-point.
Ann. Statist. 23(1995), 255-271.
Math. Review 96c:62135
-
D. Siegmund, B. Yakir.
Tail probabilities for the null distribution of scanning statistics.
Bernoulli 6(2000), 191-213.
Math. Review 2001e:62036
-
J. Steinebach.
On a conjecture of Révész and its analogue for renewal processes,
in:
B. Szyszkowicz, ed. Asymptotic methods in probability and statistics. A volume in honour of Miklós Csörgö. An international conference at Carleton Univ., Canada, 1997. Amsterdam: North-Holland/Elsevier.
Math. Review 2000c:60033
-
C. Qualls.
The law of the iterated logarithm on arbitrary sequences for stationary Gaussian processes and Brownian motion.
Ann. Probab. 5(1977), 724-739.
Math. Review 56:9655
-
C. Qualls, H. Watanabe.
An asymptotic 0-1 behavior of Gaussian processes.
Ann. Math. Statist. 42(1971), 2029-2035.
Math. Review 46:6437
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|