P. J. Fitzsimmons, University of California, San Diego
Abstract
We provide a simple probabilistic proof of a result of J. Král and I.
Netuka: If f is a measurable real-valued function on
Rd (d>
1) then the set of points at which f has a strict
fine local
maximum value is polar.
A. Ancona: Sur une conjecture concernant la capacité et l'effilement.
Lecture Notes in Math.1096,
Théorie du potentiel (Orsay, 1983), pp. 34--68.
Springer-Verlag, Berlin-New York, 1984.
MR 88f:31006
K. L. Chung: Probabilistic approach in potential theory to the equilibrium
problem. Ann. Inst. Fourier (Grenoble)23 (1973) 313--322.
MR 52 #12098
C. Dellacherie and P.-A. Meyer: Probabilités et potentiel,
Chapitres V à VIII,
Théorie des martingales.
Hermann, Paris, 1980.
MR 82b:60001
P. J. Fitzsimmons: Homogeneous random measures and a weak order for the
excessive measures of a Markov process.
Trans. Amer. Math. Soc.303 (1987) 431--478.
MR 89c:60088
R. K. Getoor and M. J. Sharpe:
Last exit times and additive functionals.
Ann. Probability1 (1973) 550--569.
MR 50 #5951
M. Fukushima, Y. Oshima and M. Takeda:
Dirichlet forms and symmetric Markov processes.
Walter de Gruyter & Co., Berlin, 1994.
MR 96f:60126
J. Král and I. Netuka: Fine topology in potential theory and strict
maxima of functions. Exposition. Math.5 (1987) 185--191.
MR 88d:31007
H. P. McKean, Jr.: A probabilistic interpretation of equilibrium
charge distributions. J. Math. Kyoto Univ.4 (1964/1965)
617--625.
MR 32 #3130