|
|
|
| | | | | |
|
|
|
|
|
When Does a Randomly Weighted Self-normalized Sum Converge in Distribution?
|
David M. Mason, University of Delaware, USA Joel Zinn, Texas A&M University, USA |
Abstract
We determine exactly when a certain randomly weighted,
self--normalized sum converges in distribution, partially verifying a 1965
conjecture of Leo Breiman. We, then, apply our results to characterize the
asymptotic distribution of relative sums and to provide a short proof of a
1973 conjecture of Logan, Mallows, Rice and Shepp on the asymptotic
distribution of self--normalized sums in the case of symmetry.
|
Full text: PDF
Pages: 70-81
Published on: April 16, 2005
|
Bibliography
N.H. Bingham, and J.L. Teugels. Conditions implying
domains of attraction. Proceedings of the Sixth Conference on Probability Theory (Bracsov, 1979), (1981) pp. 23--34, Ed. Acad. R. S.
Romania, Bucharest. Math. Review 0633913
-
N.H. Bingham , C. M. Goldie and J. L. Teugels.
Regular Variation. Encyclopedia of Mathematics and its Applications, (1987) 27,
Cambridge University Press, Cambridge.
Math. Review 0898871
-
L. Breiman, On some limit theorems similar to the arc-sin
law. Teor. Verojatnost. i Primenen (1965) 10, pp. 351--360. Math. Review 0184274
-
G. P. Chistyakov and F. Götze Limit distributions of
studentized sums. Ann. Probab., (2004) 32, 28--77. Math. Review 2040775
-
D. A. Darling. The influence of the maximum term in the
addition of independent random variables. Trans. Amer. Math. Soc.(1952)
73, 95-107.Math. Review 0048726
-
A. Devinatz. On a theorem of Lévy-Raikov. Ann.
Math. Statist (1959) 30, 583--586. Math. Review 0102851
-
E. Giné:, F. Götze and D. M. Mason. When is the
Student $t$-statistic asymptotically standard normal? Ann. Probab. (1997)
25 1514--1531. Math. Review 1457629
-
P. S. Griffin and , D. M. Mason. On the asymptotic
normality of self--normalized sums. Proc. Cambridge Phil. Soc. (1991) 109
597-610. Math. Review 1094756
-
E. Haeusler and D. M. Mason. On the asymptotic behavior of
sums of order statistics from a distribution with a slowly varying upper
tail. In: Sums, Trimmed Sums and Extremes. (M. G. Hahn, D. M. Mason
and D. C. Weiner, ed.) (1991) pp. 355--376. Birkhäuser, Boston. Math. Review 1117277
-
I. A. Ibragimov and Yu. V. Linnik. Independent and
Stationary Sequences of Random Variables. With a Supplementary Chapter by I.
A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F.
C. Kingman (1971) Wolters-Noordhoff Publishing, Groningen. Math. Review 0322926
-
R. LePage, M. Woodroofe and J. Zinn. Convergence to a
stable distribution via order statistics. Ann. Probab (1981) 9
713--752. Math. Review 0624688
-
G. D. Lin. On the moment problems. Statist. Probab.
Lett. (1997) 35 85--90. Math. Review 1467713
-
B. F. Logan, C. L. Mallows, S. O. Rice and L. Shepp.
Limit distributions of self-normalized sums. Ann. Probab. (1973) 1
788--809. Math. Review 0362449
-
B. Ramachandran and K. Lau. Functional Equations in
Probability Theory. Academic Press, Inc., Boston, MA (1991). Math. Review 1132671
-
V. M. Zolotarev. One-dimensional Stable Distributions.
Translated from the Russian by H. H. McFaden. Translation edited by Ben
Silver. Translations of Mathematical Monographs, 65. American Mathematical
Society, Providence, RI. (1986). Math. Review 0854867
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|