![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Standard representation of multivariate functions on a general probability space
|
Svante Janson, Uppsala University |
Abstract
It is well-known that a random variable, i.e. a function defined on a
probability space, with values in a Borel space, can be represented on
the special probability space consisting of the unit interval with
Lebesgue measure.
We show
an extension of this to multivariate
functions.
This is motivated by some recent constructions of random graphs.
|
Full text: PDF
Pages: 343-346
Published on: August 26, 2009
|
Bibliography
-
D. Aldous.
Representations for partially exchangeable arrays of random variables.
J. Multivar. Anal. 11 (1981), 581--598.
Math. Review 82m:60022
-
B. Bollobás, S. Janson and O. Riordan.
The phase transition in inhomogeneous random graphs.
Random Structures Algorithms 31 (2007), 3--122.
Math. Review 2008e:05124
-
B. Bollobás, S. Janson and O. Riordan.
Sparse random graphs with clustering.
Preprint, 2008.
Math. Review number not available.
-
C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi.
Convergent sequences of dense graphs I: Subgraph frequencies, metric
properties and testing.
Preprint, 2007.
Math. Review number not available.
-
C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi.
Convergent sequences of dense graphs II: Multiway cuts and statistical physics.
Preprint, 2007.
Math. Review number not available.
-
C. Dellacherie and P.-A. Meyer.
Probabilités et potentiel.
Édition entièrement refondue,
Hermann, Paris, 1975
Math. Review 58 #7757;
English transl.
Probabilities and Potential.
North-Holland, Amsterdam,
1978.
Math. Review 80b:60004
-
P. Diaconis and S. Janson.
Graph limits and exchangeable random graphs.
Rendiconti di Matematica
28 (2008), 33--61.
Math. Review 2463439
-
D. Hoover.
Relations on Probability Spaces and Arrays of Random Variables.
Preprint, Institute for Advanced Study, Princeton, NJ, 1979.
Math. Review number not available.
-
O. Kallenberg.
Foundations of Modern Probability.
2nd ed., Springer, New York, 2002.
Math. Review 2002m:60002
-
O. Kallenberg.
Probabilistic Symmetries and Invariance Principles.
Springer, New York, 2005.
Math. Review 2006i:60002
-
L. Lovász and B. Szegedy.
Limits of dense graph sequences.
J. Comb. Theory B 96 (2006), 933--957.
Math. Review 2007m:05132
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|