![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Optimal Control for Absolutely Continuous Stochastic Processes and the Mass Transportation Problem
|
Toshio Mikami, Hokkaido University |
Abstract
We study the optimal control problem for Rd-valued
absolutely continuous
stochastic processes with given marginal distributions at every time.
When $d=1$, we show the existence and the uniqueness of a minimizer
which
is a function of a time and an initial point.
When $d>1$, we show that a minimizer exists and that minimizers
satisfy the same ordinary
differential equation.
|
Full text: PDF
Pages: 199-213
Published on: January 15, 2002
|
Bibliography
-
Breiman, L. (1992), Probability, SIAM, Philadelphia.
Math.
Review 93d:60001
-
Brenier, Y. and Benamou, J. D. (1999), A numerical method for the optimal
mass transport problem and related problems, Contemporary Mathematics
226,
AMS, Providence, 1-11. Math.
Review 99j:65151
-
Brenier, Y. and Benamou, J. D. (2000), A computational fluid mechanics
solution to the Monge-Kantorovich mass transfer problem, Numer. Math.
84,
375-393. Math.
Review 2000m:65111
-
Carlen, E. A. (1984), Conservative diffusions, Commun. Math. Phys.
94,
293-315. Math.
Review 85m:81050
-
Carlen, E. A. (1986), Existence and sample path properties of the diffusions
in Nelson's stochastic machanics, Lecture Notes in Mathematics1158,
Springer, Berlin Heidelberg New York, 25-51. Math.
Review 87f:81030
-
c Cinlar, E. and Jacod, J. (1981), Representation of semimartingale
Markov processes in terms of Wiener processes and Poisson random
measures, Seminar on Stochastic Processes 1981, Birkhauser, Boston
Basel Berlin, 159-242. Math.
Review 83e:60046
-
Dall'Aglio, G. (1991), Fr`echet classes: the beginning, Mathematics
and its applications 67, Kluwer Academic Publishers, Dordrecht
Boston London,1-12. Math.
Review 94c:60021
-
Doob, J. L. (1990), Stochastic processes, John Wiley & Sons,
Inc., New York. Math.
Review 91d:60002
-
Evans, L. C. (1998), Partial differential equations, AMS,
Providence. Math.
Review 99e:35001
-
Evans, L. C. and Gangbo, W. (1999), Differential equations methods for
the Monge-Kantorovich mass transfer problem, Mem. Amer. Math.
Soc.
137, No. 653. Math.
Review 99g:35132
-
Fleming, W. H. and Soner, H. M. (1993), Controlled Markov Processes
and Viscosity Solutions, Springer, Berlin Heidelberg New York. Math.
Review 94e:93004
-
Gangbo, W. and McCann, R. J. (1996), The geometry of optimal transportation,
Acta Math. 177, 113-161. Math.
Review 98e:49102
-
Ikeda, N. and Watanabe, S. (1981), Stochastic differential equations
and diffusion processes, North-Holland/Kodansha, Amsterdam New York
Oxford Tokyo. Math.
Review 84b:60080
-
Jordan, R, Kinderlehrer, D. and Otto, F. (1998), The variational
formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29,
1-17. Math.
Review 2000b:35258
-
Mikami, T. (1990), Variational processes from the weak
forward equation, Commun. Math. Phys. 135, 19-40. Math.
Review 92h:81027
-
Mikami, T. (2000), Dynamical systems in the variational formulation
of the Fokker-Planck equation by the Wasserstein metric, Appl. Math.
Optim. 42, 203-227. Math.
Review 2002b:60055
-
Nelsen, R. B. (1999), An Introduction to Copulas, Lecture Notes
in Statistics 139, Springer, Berlin Heidelberg New York. Math.
Review 99i:60028
-
Otto, F. (2001), The geometry of dissipative evolution equations: the
porous medium equation, Comm. Partial Differential Equations 26,
101-174. Math.
Review 2002j:35180
-
Quastel, J. and Varadhan, S.R.S. (1997), Diffusion semigroups and diffusion
processes corresponding to degenerate divergence form operators, Comm.
Pure Appl. Math. 50, 667-706. Math.
Review 98b:60141
-
Rachev, S. T. and Rüschendorf, L. (1998), Mass transportation
problems, Vol. I: Theory, Springer, Berlin Heidelberg New York. Math.
Review 99k:28006
-
Salisbury, T. S. (1986), An increasing diffusion, Seminar on Stochastic
Processes 1984, Birkhauser, Boston Basel Berlin, 173-194. Math.
Review 88k:60138
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|