|
|
|
| | | | | |
|
|
|
|
|
A modified Kardar--Parisi--Zhang model
|
Giuseppe Da Prato, Scuola Normale Superiore PISA Italy Arnaud Debussche, IRMAR, ENS Cachan Bretagne, CNRS, UEB Luciano Tubaro, Dipartimento di Matematica, Università di Trento |
Abstract
A one dimensional stochastic differential equation
of the form
dX=A X dt+(1/2) (-A)-α∂ξ[((-A)-αX)2]dt+∂ξ dW(t),
X(0)=x
is considered, where A=(1/2) ∂ξ2. The equation is equipped with periodic boundary conditions.
When α=0 this equation arises in the Kardar--Parisi--Zhang model. For α≠ 0, this
equation conserves two important properties of the Kardar--Parisi--Zhang model: it contains
a quadratic nonlinear term and has an explicit invariant measure which is gaussian. However, it is
not as singular and
using renormalization and a fixed point result we prove existence and uniqueness of a strong solution
provided α>1/8.
|
Full text: PDF
Pages: 442-453
Published on: November 28, 2007
|
Bibliography
- S. Albeverio, A. B. Cruzeiro. Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids. Comm. Math. Phys. 129 (1990), no. 3, 431--444.
MR1051499
- S. Albeverio, M. Röckner, M. Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Related Fields 89 (1991), no. 3, 347--386.
MR1113223
- S. Assing. A pregenerator for Burgers equation forced by conservative noise. Comm. Math. Phys. 225 (2002), no. 3, 611--632.
MR1888875
- L. Bertini, Lorenzo, G. Giacomin. Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (1997), no. 3, 571--607.
MR1462228
- V.S. Borkar, R.T. Chari, S.K. Mitter. Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal. 81 (1988), no. 1, 184--206.
MR0967896
- J.-Y. Chemin. Fluides parfaits incompressibles. (French) [Incompressible perfect fluids] Astèrisque No. 230 (1995), 177 pp.
MR1340046
- J.-Y. Chemin. About Navier-Stokes system. Prèpublication du Laboratoire d'Analyse Numèrique de l'Universitè Paris 6, R96023 (1996). Math. Review number not available.
- G. Da Prato, J. Zabczyk. Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996. xii+339 pp. ISBN: 0-521-57900-7
MR1417491
- G. Da Prato, L. Tubaro. Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization. Probab. Theory Related Fields 118 (2000), no. 1, 131--145.
MR1785456
- G. Da Prato, L. Tubaro. Introduction to Stochastic Quantization. Pubblicazione del Dipartimento di Matematica
dell'Università di Trento. (2007). Math. Review number not available.
- G. Da Prato, A. Debussche. Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196 (2002), no. 1, 180--210.
MR1941997
- G. Da Prato, A. Debussche. Strong solutions to the stochastic quantization equations. Ann. Probab. 31 (2003), no. 4, 1900--1916.
MR2016604
- A. Debussche. The 2D-Navier-Stokes equations perturbed by a delta correlated noise. Probabilistic methods in fluids, 115--129, World Sci. Publ., River Edge, NJ, 2003.
MR2083368
- D. Gatarek, Dariusz, B. Goldys. Existence, uniqueness and ergodicity for the stochastic quantization equation. Studia Math. 119 (1996), no. 2, 179--193.
MR1391475
- M. Kardar, G. Parisi, J.C. Zhang. Dynamical scaling of growing interfaces. Phys. Rev. Lett.56 (1986), 889--892. Math. Review number not available.
- R. Mikulevicius, B.L. Rozovskii. Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243--325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999.
MR1661767
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|