|
|
|
| | | | | |
|
|
|
|
|
Surface Stretching for Ornstein Uhlenbeck Velocity Fields
|
Rene Carmona, Princeton University Stanislav Grishin, Princeton University Lin Xu, Princeton University Stanislav Molchanov, University of North Carolina at Charlotte |
Abstract
The present note deals with large time properties of the Lagrangian
trajectories of a turbulent flow in R^2 and R^3. We assume that the
flow is driven by an incompressible time-dependent random velocity
field with Gaussian statistics. We also assume that the field is
homogeneous in space and stationary and Markovian in time.
Such velocity fields can be viewed as (possibly infinite dimensional)
Ornstein-Uhlenbeck processes.
In d spatial dimensions we established the (strict) positivity of the sum
of the largest d-1 Lyapunov exponents. As a consequences of this result,
we prove the exponential stretching of surface areas (when d=3) and of
curve lengths (when d=2.) This confirms conjectures found in the
theory of turbulent flows.
|
Full text: PDF
Pages: 1-11
Published on: January 25, 1996
|
Bibliography
-
A. Antoniadis and R. Carmona (1985):
Infinite Dimensional Ornstein
Ulhenbeck Processes Probab. Th. Rel. Fields
74, 31-54.
Math Review link
-
Avellaneda and A. Majda (1990): Mathematical models with
exact renormalization for turbulent transport.
Commun. Math. Phys.
131 , 31-54.
Math Review link
-
M. Avellaneda and A. Majda (1991): An integral representation
and bounds on the effective diffusivity in passive advection by laminar
and turbulent flows.
Commun. Math. Phys.
138 , 339-391.
Math Review link
-
P.H. Baxendale (1986): Asymptotic Behavior of Stochastic Flows of
Diffeomorphisms: Two Case Studies.
Proba. Th. Rel. Fields
73 , 51-85.
Math Review link
-
P. Baxendale and B. Rozovskii (1993): Dynamo Effect for Random Magnetic
Fields.
Geophys.
Astrophys. Fluid Dynam. 73, 33--60.
Math Review link
-
P. Bougerol(1988): Theoremes limites pour les
systemes lineaires a coefficients markoviens,
Probab. Th.
Rel. Fields,
78 , 193-221.
Math Review link
-
P. Bougerol(1988): Comparaison des exposants de
Lyapounov des processus markoviens multiplicatifs.
Ann. Inst. Henri Poincare,
24 , 439-489.
Math Review link
-
R. Carmona (1997): Transport properties of Gaussian Velosity Fields.
First S.M.F Winter School in Random Media. Rennes 1994
in Real and Stochastic Analysis: Recent Advances. ed. M.M. Rao, CRC Press.
Math Review number not available
-
R. Carmona, S. Grishin and S. Molchanov (1994): Massively Parallel Simulations of
the Transport Properties of Gaussian Velocity Fields.
Mathematical
Models for Oceanography
eds R. Adler, P.Muller, B. Rosovskii. Birkhauser.
Math Review link
-
R. Carmona and J. Lacroix (1990): Spectral Theory of Random Schrodinger
Operators.
Birkha"user, Boston.
Math Review link
-
R. Carmona and L. Xu (1996): Homogenization for Time Dependent
2-D Incompressible Gaussian Flows.
Ann. of Applied Prob.
7 , 265-279.
Math Review number not available
-
A. J. Chorin (1994): Vorticity and Turbulence. Springer-Verlag
Math Review link
-
H. Furstenberg and H. Kesten (1960): Products of Random Matrices.
Ann. Math. Statist.
31 , 457-469.
Math Review number not available
-
K. Ito and H.P. McKean, Jr. (1974): Diffusion Processes and their Sample
Paths. Springer Verlag, New York, N.Y.
Math Review number not available
-
H. Kunita (1990): Stochastic Flows and Stochastic Differential Equations.
Cambridge Univ. Press. Boston, MA.
Math Review link
-
Y. Le Jan (1984): On isotropic Brownian motions.
Z. Wahrscheinlichkeitstheorie verw. Geb.
70 , 609-620.
Math Review link
-
Y. Le Jan (1991): Asymptotic Properties of Isotropic Brownian Flows.
in Spatial Stochastic Processes
eds K.S. Alexander, J.C. Watkins, pp 219-232, Birkha"user, Boston.
Math Review link
-
A.D. Virtser (1979): On products of random matrixes and operators.
Theory of Probability and its Applications
24 , 367-377.
Math Review link
-
C.L. Zirbel (1993): Stochastic Flows: Dispersion of a Mass Distribution and
Lagrangian Observations of a Random Field. Ph. D. Princeton.
Math Review link number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|