![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On Long Range Percolation with Heavy Tails
|
Sacha Friedli, IMPA, Rio de Janeiro Bernardo Nunes Borge de Lima, UFMG, Belo Horizonte Vladas Sidoravicius, IMPA, Rio de Janeiro |
Abstract
Consider independent long range percolation on $mathbf{Z}^d$, $dgeq
2$,
where edges of length $n$ are open with
probability $p_n$. We show that if
$limsup_{ntoinfty}p_n>0,$ then there
exists an integer $N$ such that $P_N(0leftrightarrow infty)>0$,
where $P_N$ is the truncated measure obtained by taking
$p_{N,n}=p_n$ for $n leq N$ and $p_{N,n}=0$ for all $n> N$.
|
Full text: PDF
Pages: 175-177
Published on: December 30, 2004
|
Bibliography
- N. Berger. Transience, Recurrence and Critical Behaviour for
Long-Range Percolation. Commun. Math. Phys. 226 (2002), 531-558.
- S. Friedli, B.N.B. de Lima., in preparation.
- J. Fröhlich, B. Spencer. The phase transition in the
one-dimensional Ising model with 1/r² interactions. Commun.
Math. Phys. 84 (1982),
87-101.
- G. Grimmett, J.M. Marstrand. The Supercritical Phase of
Percolation is Well Behaved. Proc.
Roy. Soc. London Ser A 430 (1990), 439-457.
- H. Kesten. Asymptotics in high dimensions for percolation. Oxford
Sci. Publ., Oxford Univ. Press, New York (1990).
- R. Meester, J.E. Steif. On the continuity of the Critical Value
for Long Range Percolation in the Exponential Case. Commun.
Math. Phys. 180 (1996), 483-504.
- C.M. Newman, L.S. Schulman. One Dimensional 1/|i-j|^s Percolation
Models: The Existence of a Transition for sleq2. Commun. Math.
Phys. 104 (1986), 547-571.
- V. Sidoravicius, D. Surgailis, M.-E. Vares, On the Truncated
Anisotropic Long-Range Percolation on Z², Stoch. Proc. and Appl. 81 (1999), 337-349.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|