|
|
|
| | | | | |
|
|
|
|
|
Strong Laws and Summability for Sequences of $phi$-Mixing Random Variables in Banach Spaces
|
Rüdiger Kiesel, University of London |
Abstract
In this note the almost sure convergence of stationary, $varphi$-mixing
sequences of random variables with values in real, separable Banach
spaces according to summability methods is linked to the fulfillment
of a certain integrability condition generalizing and
extending the results for i.i.d. sequences.
Furthermore we give via Baum-Katz type results an estimate for the rate
of convergence in these laws.
|
Full text: PDF
Pages: 27-41
Published on: May 14, 1997
|
Bibliography
-
A. de Acosta,
On large deviations of sums of independent random vectors,
In: Beck A. et al: Probability in Banach Spaces 5, Lecture Notes in
Mathematics 1153, (1984) 1--14, Springer Verlag.
Math Review link
-
A. de Acosta and J. Kuelbs,
Limit Theorems for Moving Averages of independent Random Vectors, Z.
W-theorie verw. Geb. 64 (1983) 67--123.
Math Review link
-
N. H. Bingham,
Summability methods and dependent strong laws, In: Eberlein, E.; Taqqu,
M.S.: Dependence in Probability and Statistics, (1986) 291--300, Birkhauser.
Math Review link
-
N. H. Bingham,
Extensions of the strong law, in Analytic and Geometric Stochastics: Adv.
Appl. Probab. Supplement (1986) 27--36.
Math Review link
-
N. H. Bingham,
Moving averages, In: Edgar, G.A.; Sucheston, L.: Almost Everywhere
Convergence Proc. Conf. Columbus OH, (1988) 131--145, New York: Academic
Press.
Math Review link
-
N. H. Bingham and C. M. Goldie,
Riesz Means and Self-Neglecting Functions, Math. Z. 199 (1988) 443--454.
Math Review article not available.
-
N. H. Bingham, C. M. Goldie and J. L. Teugels,
Regular Variation, (1987) Cambridge University Press.
Math Review link
-
D. Borwein and W. Kratz,
An O-Tauberian theorem and a High Indices theorem for power series methods
of summability, Camb. Phil. Math. Soc. 115 (1994) 365--375.
Math Review article not available.
-
A. Hozorgnia and R. Bhaskara, On summability methods and limit theorems for
Banach space random variables, Bull. Inst. Math. Acad. Sinica 7 (1979) 1--6.
Math Review link
-
R. Bradley,
Basic properties of strong mixing conditions, In: Eberlein, E.; Taqqu, M.S.:
Dependence in Probability and Statistics, (1986) 165--192, Birkhauser.
Math Review article not available.
-
L. Breiman,
Probability, Classics in applied mathematics 7 (1992) SIAM.
Math Review link
-
Y. S. Chow,
Delayed sums and Borel summability of independent, identically distributed
random variables, Bull. Inst. Math. Acad. Sinica 1 (1973) 207--220.
Math Review article not available.
-
G. H. Hardy,
Divergent Series, (1949) Oxford Press.
Math Review article not available.
-
B. Heinkel,
On the almost sure summability of B-valued random variables, In: Dudley R.
M. et al: Probability in Banach Spaces 8, (1991) 325--338, Birkhauser.
Math Review article not available.
-
B. Heinkel.
On Valiron means of B-valued random variables, Lith. Math. Journal 32 (29)
(1992) 162--173.
Math Review link
-
E. Hille and R. S. Phillips,
Functional Analysis and Semi-Groups (198) AMS.
Math Review article not available.
-
M. Iosifescu and R. Theodorescu,
Random Processes and Learning (1969) Springer Verlag.
Math Review article not available.
-
N. C. Jain,
Tail probabilities for sums of independent Banach space random variables, Z.
Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975) 155--166.
Math Review article not available.
-
R. Kiesel,
Power series methods and almost sure convergence Math. Proc. Camb. Phil.
Soc. 113 (1993) 195--204.
Math Review article not available.
-
R. Kiesel,
General Norlund transforms and power series methods, Math. Z. 214 (1993)
273--286.
Math Review article not available.
-
R. Kiesel,
Starke Gesetze fur gewichtele Summen von Zufallsvariablen,
Habilitationsschrift, Universitat Ulm (1995).
Math Review article not available.
-
R. Kiesel,
Summability and strong laws for varphi-mixing random variables, J. Theo.
Prob. (to appear).
Math Review article not available.
-
R. Kiesel and U. Stadtmuller,
Erdos-Renyi-Shepp laws and weighted sums of independent identically
distributed random variables, J. Theo. Prob., 9(4) (1996) 961--982.
Math Review article not available.
-
T. L. Lai,
Summability methods for independent identically distributed random variables,
Proc. Amer. Math. Soc. 45 (1974) 253--261.
Math Review article not available.
-
T. L. Lai,
Convergence rates in the strong law of large numbers for random variables
taking values in Banach spaces, Bull. Inst. Math. Acad. Sinica 2 (1) (1974)
67--85.
Math Review article not available.
-
N. Ledoux and M. Talagrand,
Probability in Banach spaces, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3. Folge, Band 23 (1991) Springer Verlag.
Math Review article not available.
-
E. Liebscher,
Strong convergence of sums of alpha-mixing random variables with
applications to density estimation, Stoch. Proc. Appl. 65 (1996) 69--80.
Math Review article not available.
-
M. Peligrad,
The r-quick Version of the Strong Law for Stationary varphi-mixing
sequences, In: Edgar, G. A.; Sucheston, L., Almost everywhere Convergence,
335--348, Proc. Conf. Columbus OH, (1988), New York: Academic Press.
Math Review link
-
A. Peyerimhoff,
Lectures on Summability, Lecture Notes in Mathematics, No. 107, (1969)
Springer Verlag.
Math Review article not available.
-
U. Stadtmuller,
On a family of summability methods and one-sided Tauberian conditions, J.
Math. Analysis Appl. (to appear).
Math Review link
-
A. W. van der Vaart and J. A. Wellner,
Weak Convergence and Empirical Processes, (1996) Springer Verlag.
Math Review article not available.
-
K. Zeller and W. Beekmann,
Theorie der Limitierungsverfahren, (1970) Springer Verlag.
Math Review article not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|