Superprocess Approximation For a Spatially Homogeneous Branching Walk
Ingemar Kaj, Uppsala University Serik Sagitov, Chalmers University of Technology
Abstract
We present an alternative particle picture for super-stable motion.
It is based on a non-local branching mechanism in discrete time and only
trivial space motion.
Dawson, D. A. (1993),
Measure-valued Markov processes.
Ecole d`Eté de Probabilités de Saint Flour XXI-1991 (ed. P.L. Hennequin)
Lecture Notes in Math., vol 1541, 1-260.
Math. Review 94m:60101
Gikhman, I. I. and Skorokhod, A. V. (1969),
Introduction to the theory of random processes
W. B. Saunders Company, Philadelphia.
Math. Review 40:923
Kaj, I. and Sagitov, S. (1998),
Limit processes for age-dependent branching particle systems
J. Theor. Probability 11 (1998) 225-257.
Math. Review number not available.
Matthes, K, Kerstan, J, and Mecke, J. (1978),
Infinitely divisible point processes
Wiley, Chichester.
Math. Review 58:24538
Sagitov, S. (1994),
Measure-branching renewal processes
Stoch. Proc. Appl. 52 293-308.
Math. Review 95i:60077