On the occupation measure of super-Brownian motion
Jean-Francois Le Gall, Ecole normale superieure de Paris Mathieu Merle, UBC Vancouver
Abstract
We derive the asymptotic behavior of the total occupation measure of the
unit ball for super-Brownian motion started from the Dirac measure at a
distant point and conditioned to hit the unit ball. In the critical
dimension 4, we obtain a limiting exponential distribution.
D.A. Dawson D.A., I. Iscoe I. and E.A. Perkins. Super-Brownian
motion: Path properties and hitting probabilities.
Probab. Th. Rel. Fields 83(1989), 135-205.
Math. Review 90k:60073
K. Itô and H.P. McKean. Diffusion Processes and
their Sample Paths.Springer (1965).
Math. Review 199891
T.Y. Lee. Asymptotic results for super-Brownian motions
and semilinear differential equations. Ann. Probab.29
(2001),
1047-1060.
Math. Review 2002i:60055
J.F. Le Gall. Spatial Branching Processes,
Random Snakes and Partial Differential Equations. Lectures in
Mathematics ETH Zürich. Birkhäuser (1999).
Math. Review 2001g:60211
J.F. Le Gall. The Hausdorff measure of the range of
super-Brownian motion. In: Perplexing Problems in Probability.
Festschrift in Honor of Harry Kesten.M. Bramson, R. Durrett eds, pp.
285-314. Birkhäuser (1999).
Math. Review 2001j:60095
M. Merle. Local behaviour of local times of
super-Brownian motion. Ann. Institut H. Poincaré Probab.
Stat.42 (2006), 491-520.
Math. Review 2242957
E.A. Perkins.
Dawson-Watanabe Superprocesses and
Measure-Valued Diffusions.
Lectures on Probability Theory and Statistics, Ecole
d'été de Probabilités de Saint-Flour XXIX.
Springer Lecture Notes Math. 1781, pp.125-329 (2002).
Math. Review 2003k:60104
S. Sugitani.
Some properties for the measure-valued branching diffusion process.
J. Math. Soc. Japan41 (1989), 437-462.
Math. Review 91a:60223