![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Itai Benjamini, Weizmann Institute, Rehovot 76100, Israel David Bruce Wilson, Microsoft Research |
Abstract
A random walk on Zd is excited if the first time it visits a
vertex there is a bias in one direction, but on subsequent visits
to that vertex the walker picks a neighbor uniformly at random.
We show that excited random walk on Zd is transient iff d>1.
|
Full text: PDF
Pages: 86-92
Published on: June 24, 2003
|
Bibliography
-
O. Angel, I. Benjamini, and B. Virag. Random walks that avoid
their past convex hull. Elec. Comm. Prob. 8(2):6-16, 2003.
MR 1 961 285
-
R. F. Bass and T. Kumagai.
Laws of the iterated logarithm for the range of random walks in two and three dimensions.
Ann. Prob. 30:1369--1396, 2002.
MR 2003d:60086
-
M. Bousquet-Mélou and G. Schaeffer.
Walks on the slit plane.
Probab. Theory Related Fields 124(3):305--344, 2002.
arXiv:math.CO/0012230.
MR 1 939 650
-
B. Davis. Reinforced random walk.
Probab. Theory Related Fields 84(2):203--229, 1990.
MR 91a:60179
-
B. Davis. Weak limits of perturbed Brownian motion
and the equation Yt = Bt + α sups ≤ t Ys + β infs ≤ tYs.
Ann. Prob. 24:2007--2023, 1996.
MR 97m:60021
-
B. Davis. Brownian motion and random walk perturbed at extrema.
Probab. Theory Related Fields 113(4):501--518, 1999.
MR 2001k:60030
-
P. G. Doyle and J. L. Snell.
Random Walks and Electric Networks,
Mathematical Association of America, 1984.
arXiv:math.PR/0001057.
MR 89a:94023
-
R. Durrett. Probability: Theory and Examples, second edition.
Duxbury Press, 1996. 503 pp.
MR 98m:60001
-
A. Dvoretzky and P. Erdös.
Some problems on random walk in space.
Proc. 2nd Berkeley Symp., pp. 353--367, 1951.
MR 13,852b
-
M. L. Glasser and I. J. Zucker. Extended Watson integrals for the
cubic lattice. Proc. Natl. Acad. Sci., USA
74:1800-1801, 1977.
MR 56 #686
-
G. F. Lawler. Intersections of Random Walks.
Probability and its Applications. Birkhäuser, Boston, MA, 1991. 219 pp.
MR 92f:60122
-
G. F. Lawler.
A lower bound on the growth exponent for loop-erased random walk in two dimensions.
ESAIM Probab. Statist. 3:1--21, 1999.
MR 2000g:60078
-
R. Pemantle. Random processes with reinforcement. Preprint, 28 pp.
http://www.math.ohio-state.edu/~pemantle/papers/Papers.html.
-
M. Perman and W. Werner.
Perturbed Brownian motions.
Probab. Theory Related Fields 108:357--383, 1997.
MR 98i:60081
-
O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math. 118:221--288, 2000.
arXiv:math.PR/9904022.
MR 2001m:60227
-
B. Tóth and W. Werner. The true self-repelling motion.
Probab. Theory Related Fields 111(3):375--452, 1998.
MR 99i:60092
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|