Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 8 (2003) > Paper 9 open journal systems 


Excited Random Walk

Itai Benjamini, Weizmann Institute, Rehovot 76100, Israel
David Bruce Wilson, Microsoft Research


Abstract
A random walk on Zd is excited if the first time it visits a vertex there is a bias in one direction, but on subsequent visits to that vertex the walker picks a neighbor uniformly at random. We show that excited random walk on Zd is transient iff d>1.


Full text: PDF

Pages: 86-92

Published on: June 24, 2003


Bibliography
  1. O. Angel, I. Benjamini, and B. Virag. Random walks that avoid their past convex hull. Elec. Comm. Prob. 8(2):6-16, 2003. MR 1 961 285
  2. R. F. Bass and T. Kumagai. Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Prob. 30:1369--1396, 2002. MR 2003d:60086
  3. M. Bousquet-Mélou and G. Schaeffer. Walks on the slit plane. Probab. Theory Related Fields 124(3):305--344, 2002. arXiv:math.CO/0012230. MR 1 939 650
  4. B. Davis. Reinforced random walk. Probab. Theory Related Fields 84(2):203--229, 1990. MR 91a:60179
  5. B. Davis. Weak limits of perturbed Brownian motion and the equation Yt = Bt + α sups ≤ t Ys + β infs ≤ tYs. Ann. Prob. 24:2007--2023, 1996. MR 97m:60021
  6. B. Davis. Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113(4):501--518, 1999. MR 2001k:60030
  7. P. G. Doyle and J. L. Snell. Random Walks and Electric Networks, Mathematical Association of America, 1984. arXiv:math.PR/0001057. MR 89a:94023
  8. R. Durrett. Probability: Theory and Examples, second edition. Duxbury Press, 1996. 503 pp. MR 98m:60001
  9. A. Dvoretzky and P. Erdös. Some problems on random walk in space. Proc. 2nd Berkeley Symp., pp. 353--367, 1951. MR 13,852b
  10. M. L. Glasser and I. J. Zucker. Extended Watson integrals for the cubic lattice. Proc. Natl. Acad. Sci., USA 74:1800-1801, 1977. MR 56 #686
  11. G. F. Lawler. Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston, MA, 1991. 219 pp. MR 92f:60122
  12. G. F. Lawler. A lower bound on the growth exponent for loop-erased random walk in two dimensions. ESAIM Probab. Statist. 3:1--21, 1999. MR 2000g:60078
  13. R. Pemantle. Random processes with reinforcement. Preprint, 28 pp. http://www.math.ohio-state.edu/~pemantle/papers/Papers.html.
  14. M. Perman and W. Werner. Perturbed Brownian motions. Probab. Theory Related Fields 108:357--383, 1997. MR 98i:60081
  15. O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118:221--288, 2000. arXiv:math.PR/9904022. MR 2001m:60227
  16. B. Tóth and W. Werner. The true self-repelling motion. Probab. Theory Related Fields 111(3):375--452, 1998. MR 99i:60092
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X