![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
An easy proof of the ζ(2) limit in the random assignment problem
|
Johan Wästlund, Chalmers University of Technology |
Abstract
The edges of the complete bipartite graph $K_{n,n}$ are given independent exponentially distributed costs. Let $C_n$ be the minimum total cost of a perfect matching. It was conjectured by M. MÈzard and G. Parisi in 1985, and proved by D. Aldous in 2000, that $C_n$ converges in probability to $pi^2/6$. We give a short proof of this fact, consisting of a proof of the exact formula $1 + 1/4 + 1/9 + dots + 1/n^2$ for the expectation of $C_n$, and a $O(1/n)$ bound on the variance.
|
Full text: PDF
Pages: 261-269
Published on: July 5, 2009
|
Bibliography
-
D. Aldous. Asymptotics in the random assignment problem,
Probab. Theory Relat. Fields 93 (1992) 507-534.
Math. Review 94b:60013
-
D. Aldous. The zeta(2) limit in the random assignment problem,
Random Structures Algorithms 18 (2001), no 4. 381-418.
Math. Review 2002f:60015
-
S. E. Alm, and G. B. Sorkin. Exact expectations and distributions in the random assignment problem,
Combin. Probab. Comput. 11 (2002), no. 3, 217-248.
Math. Review 2003e:60015
-
R. Brunetti, W. Krauth, M. MŽzard and G. Parisi. Extensive Numerical Simulation of Weighted Matchings: Total Length and Distribuion of Links in the Optimal Solution,
Europhys. Lett. 14 4 (1991), 295-301.
Math. Review number not available.
-
M. Buck, C. Chan, and D. Robbins. On the expected value of the minimum assignment, Random Structures & Algorithms 21 (2002), no. 1, 33-58.
Math. Review 2003h:15034
-
D. Coppersmith and G. Sorkin. Constructive Bounds and Exact Expectations For the Random Assignment Problem,
Random Structures & Algorithms 15 (1999), 133-144.
Math. Review 2001j:05096
-
D. Coppersmith and G. Sorkin. On the expected incremental cost of a minimum assignment.
In Contemporary Mathematics (B. Bollob'as, ed.), Vol. 10 of Bolyai Society Mathematical Studies, Springer.
Math. Review number not available.
-
W. E. Donath. Algorithm and average-value bounds for assignment problems, IBM J. Res. Dev. 13 (1969), 380-386.
Math. Review number not available.
-
V. Dotsenko. Exact solution of the random bipartite matching model,
J. Phys. A 33 (2000), 2015-2030.
Math. Review number not available.
-
M. X. Goemans and M. S. Kodialam. A lower bound on the expected cost of an optimal assignment, Math. Oper. Res. 18 (1993), 267-274.
Math. Review
-
T. E. Harris. Lower bound for the critical probability in a certain percolation process, Proc. Cambridge Phil. Soc. 56 (1960), 13-20.
Math. Review 94m:90044
-
J. Houdayer, J. H. Bouter de Monvel and O. C. Martin. Comparing mean field and Euclidean matching problems,
Eur. Phys. J. B. 6 (1998), 383-393.
Math. Review number not available.
-
R. Karp. An upper bound on the expected cost of an optimal assignment, In Discrete Algorithms and Complexity: Proceedings of the Japan-U.S. Joint Seminar, Academic Press, 1987, 1-4.
Math. Review 88k:90128
-
R. Karp, A. H. G. Rinnooy Kan and R. V. Vohra.
Average case analysis of a heuristic for the assignment problem,
Math. Oper. Res. 19 (1994), 513-522.
Math. Review 95e:90116
-
A. J. Lazarus. The assignment problem with uniform (0,1) cost matrix, Master's thesis, Department of Mathematics, Princeton University, Princeton NJ, 1979.
Math. Review number not available.
-
A. J. Lazarus. Certain expected values in the random assignment problem, Oper. Res. Lett. 14 (1993), 207-214.
Math. Review 94g:90081
-
S. Linusson and J. WŠstlund. A generalization of the random assignment problem, arXiv:math.CO/0006146.
Math. Review number not available.
-
S. Linusson and J. WŠstlund. A proof of Parisi's conjecture on the random assignment problem,
Probab. Theory Relat. Fields 128 (2004), 419-440.
Math. Review 2004m:90102
-
M. MŽzard and G. Parisi. Replicas and optimization,
J. Phys. Lett. 46 (1985), 771-778.
Math. Review number not available.
-
M. MŽzard and G. Parisi. Mean-field equations for the matching and the travelling salesman problems,
Europhys. Lett. 2 (1986) 913-918.
Math. Review number not available.
-
M. MŽzard and G. Parisi. On the solution of the random link matching problems, J. Physique Lettres 48 (1987), 1451-1459.
Math. Review number not available.
-
C. Nair, B. Prabhakar and M. Sharma. Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures,
Random Structures and Algorithms 27 No. 4 (2006), 413-444.
Math. Review 2006e:90050
-
B. Olin. Asymptotic properties of the random assignment problem, Ph.D. thesis, Kungl Tekniska Hšgskolan, Stockholm, Sweden, (1992).
Math. Review number not available.
-
P. M. Pardalos and K. G. Ramakrishnan. On the expected optimal value of random assignment problems: Experimental results and open questions,
Comput. Optim. Appl. 2 (1993), 261-271.
Math. Review number not available.
-
G. Parisi. A conjecture on random bipartite matching,
arXiv:cond-mat/9801176, 1998.
Math. Review number not available.
-
M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes 'Etudes Sci. Publ. Math. 81 (1995), 73-205.
Math. Review 97h:60016
-
D. W. Walkup. On the expected value of a random assignment problem,
SIAM J. Comput. 8 (1979), 440-442.
Math. Review 80e:68176
-
J. WŠstlund. The variance and higher moments in the random assignment problem, Linkšping Studies in Mathematics no 8 (2005).
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|