Spectrum of random Toeplitz matrices with band structure
Vladislav Kargin, Stanford University
Abstract
This paper considers the eigenvalues of symmetric Toeplitz
matrices with independent random entries and band structure. We assume that
the entries of the matrices have zero mean and a uniformly bounded 4th moment, and we study the limit of the eigenvalue distribution when both the size of the matrix and the width of the band with non-zero
entries grow to infinity. It is shown that if the bandwidth/size ratio
converges to zero, then the limit of the eigenvalue distributions is
Gaussian. If the ratio converges to a positive limit, then the distributions
converge to a non-Gaussian distribution, which depends only on the limit
ratio. A formula for the fourth moment of this distribution is derived.
Bose A. and J. Mitra. Limiting spectral distribution of a special circulant. Statist. Probab. Lett.60 (2002), 111-120.
Math. Review 1945684
Bose A and A. Sen. Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Comm. Probab.12 (2007), 29-35. (Paging changed to 21-27 on journal site.)
Math. Review 2284045
Brockwell P. J. and R. A. Davis Time Series: Theory and Methods (1991) Second edition. Springer-Verlag, New York.
Math. Review 1093459
Bryc W., Dembo A., and T. Jiang. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab.34 (2006), 1-38.
Math. Review 2206341
Chatterjee S. Fluctuations of eigenvalues and second order Poincare inequalities. Probab. Theory Related Fields.143 (2009), 1-40.
Math. Review 2449121
Gray R. M. On the asymptotic eigenvalue distribution of Toeplitz matrices. IEEE
Trans. Information Theory.18 (1972), 725-730.
Math. Review 453214
Hammond C. and S. J. Miller. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret.
Probab.18 (2005), 537-566.
Math. Review 2167641
Hoffman A. J. and H. W. Wielandt. The variation of the spectrum of a normal matrix. Duke Math. J.20 (1953), 37-39.
Math. Review 52379
Massey A., Miller S. J. and J. Sinsheimer. Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab.20 (2007), 637-662.
Math. Review 2337145
Meckes M. W. On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab.12 (2007), 315-325.
Math. Review 2342710
Trotter H. F. Eigenvalue distribution of large hermitian matrices; Wigner semi-circle law and a theorem of Kac, Murdock, and Szego. Adv. in Math. 54 (1984), 67-82.
Math. Review 761763