Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 15(2010) > Paper 13 open journal systems 


Measurability of optimal transportation and strong coupling of martingale measures

Joaquin Fontbona, Universidad de Chile
Hélène Guérin, Université Rennes 1
Sylvie Méléard, École Polytechnique


Abstract
We consider the optimal mass transportation problem in $RR^d$ with measurably parameterized marginals under conditions ensuring the existence of a unique optimal transport map. We prove a joint measurability result for this map, with respect to the space variable and to the parameter. The proof needs to establish the measurability of some set-valued mappings, related to the support of the optimal transference plans, which we use to perform a suitable discrete approximation procedure. A motivation is the construction of a strong coupling between orthogonal martingale measures. By this we mean that, given a martingale measure, we construct in the same probability space a second one with a specified covariance measure process. This is done by pushing forward the first martingale measure through a predictable version of the optimal transport map between the covariance measures. This coupling allows us to obtain quantitative estimates in terms of the Wasserstein distance between those covariance measures.


Full text: PDF

Pages: 124-133

Published on: April 26, 2010


Bibliography
  1. El Karoui, Nicole; Lepeltier, Jean-Pierre. Représentation des processus ponctuels multivariés à l'aide d'un processus de Poisson. (French) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 2, 111--133. MR0448546 (56 #6852)
  2. El Karoui, N.; Méléard, S. Martingale measures and stochastic calculus. Probab. Theory Related Fields 84 (1990), no. 1, 83--101. MR1027822 (91k:60058)
  3. Fontbona, Joaquin; Guérin, Hélène; Méléard, Sylvie. Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Probab. Theory Related Fields 143 (2009), no. 3-4, 329--351. MR2475665 (2010d:60216)
  4. Gangbo, Wilfrid; McCann, Robert J. The geometry of optimal transportation. Acta Math. 177 (1996), no. 2, 113--161. MR1440931 (98e:49102)
  5. Grigelionis, B. The representation of integer-valued random measures as stochastic integrals over the Poisson measure. (Russian) Litovsk. Mat. Sb. 11 (1971), 93--108. MR0293703 (45 #2780)
  6. Guérin, H. Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach. Stochastic Process. Appl. 101 (2002), no. 2, 303--325. MR1931271 (2004e:60112)
  7. Méléard, Sylvie; Roelly, Sylvie. Discontinuous measure-valued branching processes and generalized stochastic equations. Math. Nachr. 154 (1991), 141--156. MR1138376 (93d:60140)
  8. Rachev, Svetlozar T.; Rüschendorf, Ludger. Mass transportation problems. Vol. I. Theory. Probability and its Applications (New York). Springer-Verlag, New York, 1998. xxvi+508 pp. ISBN: 0-387-98350-3 MR1619170 (99k:28006)
  9. Rockafellar, R. Tyrrell; Wets, Roger J.-B. Variational analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317. Springer-Verlag, Berlin, 1998. xiv+733 pp. ISBN: 3-540-62772-3 MR1491362 (98m:49001)
  10. Rüschendorf, Ludger. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 1, 117--129. MR0795791 (86m:60004)
  11. Schachermayer, Walter; Teichmann, Josef. Characterization of optimal transport plans for the Monge-Kantorovich problem. Proc. Amer. Math. Soc. 137 (2009), no. 2, 519--529. MR2448572 (2009j:49029)
  12. Tanaka, Hiroshi. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46 (1978/79), no. 1, 67--105. MR0512334 (80b:60083)
  13. Villani, Cédric. Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. xvi+370 pp. ISBN: 0-8218-3312-X MR1964483 (2004e:90003)
  14. Villani, Cédric. Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3 MR2459454 (Review)
  15. Walsh, John B. An introduction to stochastic partial differential equations. École d'été de probabilités de Saint-Flour, XIV---1984, 265--439, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876085 (88a:60114)
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X