![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Measurability of optimal transportation and strong coupling of martingale measures
|
Joaquin Fontbona, Universidad de Chile Hélène Guérin, Université Rennes 1 Sylvie Méléard, École Polytechnique |
Abstract
We consider the optimal mass transportation problem in $RR^d$ with measurably parameterized marginals under conditions ensuring the existence of a unique optimal transport map. We prove a joint measurability result for this map, with respect to the space variable and to the parameter. The proof needs to establish the measurability of some set-valued mappings, related to the support of the optimal transference plans, which we use to perform a suitable discrete approximation procedure. A motivation is the construction of a strong coupling between orthogonal martingale measures. By this we mean that, given a martingale measure, we construct in the same probability space a second one
with a specified covariance measure process. This is done by pushing forward the first martingale measure through a predictable version of the optimal transport map between the covariance measures. This coupling allows us to obtain quantitative estimates in terms of the Wasserstein distance between those covariance measures.
|
Full text: PDF
Pages: 124-133
Published on: April 26, 2010
|
Bibliography
- El Karoui, Nicole; Lepeltier, Jean-Pierre. Représentation des processus ponctuels multivariés à l'aide d'un
processus de Poisson.
(French) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 2, 111--133. MR0448546 (56 #6852)
- El Karoui, N.; Méléard, S. Martingale measures and stochastic calculus.
Probab. Theory Related Fields 84 (1990), no. 1, 83--101. MR1027822 (91k:60058)
- Fontbona, Joaquin; Guérin, Hélène; Méléard, Sylvie. Measurability of optimal transportation and convergence rate for Landau
type interacting particle systems.
Probab. Theory Related Fields 143 (2009), no. 3-4, 329--351. MR2475665 (2010d:60216)
- Gangbo, Wilfrid; McCann, Robert J. The geometry of optimal transportation.
Acta Math. 177 (1996), no. 2, 113--161. MR1440931 (98e:49102)
- Grigelionis, B. The representation of integer-valued random measures as stochastic
integrals over the Poisson measure.
(Russian) Litovsk. Mat. Sb. 11 (1971), 93--108. MR0293703 (45 #2780)
- Guérin, H. Existence and regularity of a weak function-solution for some Landau
equations with a stochastic approach.
Stochastic Process. Appl. 101 (2002), no. 2, 303--325. MR1931271 (2004e:60112)
- Méléard, Sylvie; Roelly, Sylvie. Discontinuous measure-valued branching processes and generalized
stochastic equations.
Math. Nachr. 154 (1991), 141--156. MR1138376 (93d:60140)
- Rachev, Svetlozar T.; Rüschendorf, Ludger. Mass transportation problems. Vol. I.
Theory.
Probability and its Applications (New York). Springer-Verlag, New York, 1998. xxvi+508 pp. ISBN: 0-387-98350-3 MR1619170 (99k:28006)
- Rockafellar, R. Tyrrell; Wets, Roger J.-B. Variational analysis.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 317. Springer-Verlag, Berlin, 1998. xiv+733 pp. ISBN: 3-540-62772-3 MR1491362 (98m:49001)
- Rüschendorf, Ludger. The Wasserstein distance and approximation theorems.
Z. Wahrsch. Verw. Gebiete 70 (1985), no. 1, 117--129. MR0795791 (86m:60004)
- Schachermayer, Walter; Teichmann, Josef. Characterization of optimal transport plans for the Monge-Kantorovich
problem.
Proc. Amer. Math. Soc. 137 (2009), no. 2, 519--529. MR2448572 (2009j:49029)
- Tanaka, Hiroshi. Probabilistic treatment of the Boltzmann equation of Maxwellian
molecules.
Z. Wahrsch. Verw. Gebiete 46 (1978/79), no. 1, 67--105. MR0512334 (80b:60083)
- Villani, Cédric. Topics in optimal transportation.
Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. xvi+370 pp. ISBN: 0-8218-3312-X MR1964483 (2004e:90003)
- Villani, Cédric. Optimal transport.
Old and new.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3 MR2459454 (Review)
- Walsh, John B. An introduction to stochastic partial differential equations.
École d'été de probabilités de Saint-Flour, XIV---1984,
265--439, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876085 (88a:60114)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|