An extension of the Yamada-Watanabe condition for pathwise uniqueness to stochastic differential equations with jumps
Reinhard Hoepfner, Johannes Gutenberg Universitaet Mainz
Abstract
We extend the Yamada-Watanabe condition for pathwise uniqueness to stochastic differential equations with jumps, in the special case where small jumps are summable.
R. Bass. Stochastic differential equations driven by symmetric stable processes. Seminaire de Probabilites (Strasbourg)36 (2002), 302--313. Math. Review 2004b:60143.
R. Bass. Stochastic differential equations with jumps. Probability Surveys1 (2004), 1--19.
R. Bass, K. Burdzy, Z. Chen. Stochastic differential equations driven by stable processes for which pathwise uniqueness fails. Stoch. Proc. Appl.111 (2004), 1--15. Math. Review 2005c:60072.
N. Ikeda, S. Watanabe. Stochastic differential equations and diffusion processes.
North-Holland / Kodansha 1989. Math. Review 90m:60069.
J.Jacod, A. Shiryaev. Limit theorems for stochastic processes. Springer 1987. Math. Review 89k:60044.
K. Karatzas, S. Shreve. Continuous martingales and Brownian motion. Springer 1991. Math. Review 92h:60127.
P. Protter. Stochastic integration and differential equations. Springer 2005. Math. Review 2008e:60001.
A. Skorokhod. Studies in the theory of random processes. Addison-Wesley 1965. Math. Review 32 #3082a.
T. Yamada. Sur une construction des solutions d' equations differentielles stochastiques dans le cas non-lipschitzien. Seminaire de Probabilites (Strasbourg)12 (1978), 114--131. Math. Review 80k:60076.
T. Yamada, S. Watanabe. On the uniqueness of solutions of stochastic differential equations.
J. Math. Kyoto Univ.11 (1971), 155--167. Math. Review 43 #4150.
P. Zanzotto. On stochastic differential equations driven by a Cauchy process and other stable Levy motions.
Ann. Prob.30 (2002), 802-825. Math. Review 2003d:60120.