|  |  | 
	|  | |  |  |  |  | |  | 
	|  |  |  | 
	 | 
 
 
 
	| On a SDE driven by a fractional Brownian motion and with monotone drift 
 
 |  
		 
			| Brahim  Boufoussi, Department of Mathematics, Cadi Ayyad University FSSM Youssef  Ouknine, Universite Cadi Ayyad
 
 |  
 
 
			 
				| Abstract Let ${B_{t}^{H},tin lbrack 0,T]}$
be a fractional Brownian motion with
Hurst parameter $H>frac{1}{2}$. We prove the existence of a weak solution
for a stochastic differential equation of the form $X_{t}=x+B_{t}^{H}+%
int_{0}^{t}left( b_{1}(s,X_{s})+b_{2}(s,X_{s})right) ds$, where $%
b_{1}(s,x)$ is a H"{o}lder continuous function of order strictly larger
than $1-frac{1}{2H}$ in $x$ and than $H-frac{1}{2}$ in time and $b_{2}$ is
a real bounded nondecreasing and left  (or right)
continuous function.
 
 
 
 |  
   | Full text: PDF 
 Pages: 122-134
 
 Published on: October 7, 2003
 
 
 
 |  
                         
                                | Bibliography 
 
E. Al`{o}s, O. Mazet and D. Nualart,
Stochastic calculus with respect to Gaussian processes,
 Annals of Probability, 29, (2001) 766-801.
MR 1849177
K, Bahlali, Flows of homeomorphisms of stochastic differential
equations with mesurable drift,
 Stoch. Stoch. Reports, Vol. 67, (1999) 53-82.
MR 1717807
L, Decreusefond and A. S, "{U}stunel, Stochastic Analysis of
the fractional Brownian Motion,
 Potential Analysis, 10, (1999) 177-214.
MR 1677455
L, Denis, M, Erraoui and Y, Ouknine, Existence and uniqueness
of one dimensional SDE driven by fractional noise,
(preprint) (2002)
X. M, Fernique,
Regularit'{e} des trajectoires de fonctions al'{e}atoires gaussiennes,
 In: '{E}cole d'Et'{e} de Saint-Flour IV (1974),
Lecture Notes in Mathematics, 480, 2-95.
MR 0413238
A, Friedman,
Stochastic differential equations and applications,
 Academic Press, 1975.
MR 0494490
I, Gy"{o}ngy and E, Pardoux,
On quasi-linear stochastic partial differential equations,
 Probab. Theory Rel. Fields,94, (1993) 413-425.
MR 1201552
J.P, Lepeltier and J, San Martin,
Backward stochastic differential equations with continuous coefficient,
 Stat. Prob. Letters, 32, (1997), 425-430.
MR 1602231
Yu. Mishura and D, Nualart,
Weak solution for stochastic differential equations driven by a fractional
Brownian motion with parameter $ H > 1/2 $ and discontinuous drift,
 Preprint IMUB N ${{}^o}$ 319. 2003.
S, Moret and D. Nualart,
Onsager-Machlup functional for the fractional Brownian motion,
Preprint, (2001)
S, Nakao,
On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, 
 Osaka J. Math, 9, (1972) 513-518.
MR 0326840
I, Norros, E, Valkeila and J, Virtamo,
An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion,
 Bernoulli, 5, (1999) 571-587.
MR 1704556
D, Nualart and Y, Ouknine,
Regularizing differential equations by fractional noise.
 Stoch. Proc. and their Appl. 102, (2002) 103-116.
MR 1934157
Y, Ouknine,
G'{e}n'{e}ralisation d'un Lemme de S. Nakao et Applications,
 Stochastics, 23, (1988) 149-157.
MR 0928352
S. G, Samko, A. A, Kilbas and O. I, Mariachev,
Fractional integrals and derivatives,
 Gordon and Breach Science, 1993.
MR 83g:76042
A. Ju, Veretennikov,
Strong solutions and explicit formulas for solutions of stochastic integral equations,
 Math. USSR Sb. 39, (1981) 387-403.
MR 0568986
M, Z"{a}hle, Integration with respect to fractal functions and
stochastic calculus I,
 Prob. Theory Rel. Fields, 111, (1998) 333-374.
MR 1640795
A. K, Zvonkin,
A transformation of the phase space of a diffusion process that removes the drift,  Math. USSR Sb. 22, (1974) 129-149.
MR 0336813
 
 
 
 |  
 
 
 | 
 
 
 
 
 
 
 
 
 
   | 
	|  |   
 
 |  | 
 
	|  | |  |  |  |  | 
 
 Electronic Communications in Probability.   ISSN: 1083-589X |  |