![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On a SDE driven by a fractional Brownian motion and with monotone drift
|
Brahim Boufoussi, Department of Mathematics, Cadi Ayyad University FSSM Youssef Ouknine, Universite Cadi Ayyad |
Abstract
Let ${B_{t}^{H},tin lbrack 0,T]}$
be a fractional Brownian motion with
Hurst parameter $H>frac{1}{2}$. We prove the existence of a weak solution
for a stochastic differential equation of the form $X_{t}=x+B_{t}^{H}+%
int_{0}^{t}left( b_{1}(s,X_{s})+b_{2}(s,X_{s})right) ds$, where $%
b_{1}(s,x)$ is a H"{o}lder continuous function of order strictly larger
than $1-frac{1}{2H}$ in $x$ and than $H-frac{1}{2}$ in time and $b_{2}$ is
a real bounded nondecreasing and left (or right)
continuous function.
|
Full text: PDF
Pages: 122-134
Published on: October 7, 2003
|
Bibliography
-
E. Al`{o}s, O. Mazet and D. Nualart,
Stochastic calculus with respect to Gaussian processes,
Annals of Probability, 29, (2001) 766-801.
MR 1849177
-
K, Bahlali, Flows of homeomorphisms of stochastic differential
equations with mesurable drift,
Stoch. Stoch. Reports, Vol. 67, (1999) 53-82.
MR 1717807
-
L, Decreusefond and A. S, "{U}stunel, Stochastic Analysis of
the fractional Brownian Motion,
Potential Analysis, 10, (1999) 177-214.
MR 1677455
-
L, Denis, M, Erraoui and Y, Ouknine, Existence and uniqueness
of one dimensional SDE driven by fractional noise,
(preprint) (2002)
-
X. M, Fernique,
Regularit'{e} des trajectoires de fonctions al'{e}atoires gaussiennes,
In: '{E}cole d'Et'{e} de Saint-Flour IV (1974),
Lecture Notes in Mathematics, 480, 2-95.
MR 0413238
-
A, Friedman,
Stochastic differential equations and applications,
Academic Press, 1975.
MR 0494490
-
I, Gy"{o}ngy and E, Pardoux,
On quasi-linear stochastic partial differential equations,
Probab. Theory Rel. Fields,94, (1993) 413-425.
MR 1201552
-
J.P, Lepeltier and J, San Martin,
Backward stochastic differential equations with continuous coefficient,
Stat. Prob. Letters, 32, (1997), 425-430.
MR 1602231
-
Yu. Mishura and D, Nualart,
Weak solution for stochastic differential equations driven by a fractional
Brownian motion with parameter $ H > 1/2 $ and discontinuous drift,
Preprint IMUB N ${{}^o}$ 319. 2003.
-
S, Moret and D. Nualart,
Onsager-Machlup functional for the fractional Brownian motion,
Preprint, (2001)
-
S, Nakao,
On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations,
Osaka J. Math, 9, (1972) 513-518.
MR 0326840
-
I, Norros, E, Valkeila and J, Virtamo,
An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion,
Bernoulli, 5, (1999) 571-587.
MR 1704556
-
D, Nualart and Y, Ouknine,
Regularizing differential equations by fractional noise.
Stoch. Proc. and their Appl. 102, (2002) 103-116.
MR 1934157
-
Y, Ouknine,
G'{e}n'{e}ralisation d'un Lemme de S. Nakao et Applications,
Stochastics, 23, (1988) 149-157.
MR 0928352
-
S. G, Samko, A. A, Kilbas and O. I, Mariachev,
Fractional integrals and derivatives,
Gordon and Breach Science, 1993.
MR 83g:76042
-
A. Ju, Veretennikov,
Strong solutions and explicit formulas for solutions of stochastic integral equations,
Math. USSR Sb. 39, (1981) 387-403.
MR 0568986
-
M, Z"{a}hle, Integration with respect to fractal functions and
stochastic calculus I,
Prob. Theory Rel. Fields, 111, (1998) 333-374.
MR 1640795
-
A. K, Zvonkin,
A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sb. 22, (1974) 129-149.
MR 0336813
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|