![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space
|
Vincent Le Prince, IRMAR, Rennes |
Abstract
We establish in this paper an exact formula which links the dimension of the harmonic measure, the asymptotic entropy and the rate of escape for a random walk on a discrete subgroup of the isometry group of a Gromov hyperbolic space. This completes a result obtained by the author in a previous paper, where only an upper bound for the dimension was proved.
|
Full text: PDF
Pages: 45-53
Published on: February 2, 2008
|
Bibliography
- A. Avez. Entropie des groupes de type fini.
C. R. Acad. Sci. Paris, Sér. A 275 (1972), 1363--1366.
Math. Review :0324741
- S. Blachère, P. Haïssinsky, and P. Mathieu. Harmonic measures versus quasiconformal measures for hyperbolic groups. preprint (2007).
-
M. Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov.
Pacific Journal of Mathematics 159 (1993), 241--270.
Math. Review 94m:57075
- M. Coornaert, T. Delzant, A. Papadopoulos.
Géométrie et théorie des groupes : les groupes hyperboliques de Gromov.
Lecture Notes in Math. 1441 (1990), Springer.
Math. Review 92f:57003
- Y. Derriennic. Quelques applications du théorème ergodique sous-additif.
Asterisque 74 (1980), 183--201.
Math. Review 82e:60013
- E. Ghys, P. De La Harpe (eds.).
Sur les Groupes Hyperboliques d'après Mikhael Gromov. Birkhäuser, Basel (1990).
Math. Review 92f:53050
- M. Gromov.
Hyperbolic groups. Essays in Group Theory (S.M. Gersten, ed.), MSRI Publ. 8 (1987), Springer, New York, 75--263.
Math. Review 89e:20070
- V. A. Kaimanovich. Hausdorff dimension of the harmonic measure on trees.
Ergod. Th. & Dynam. Sys. 18 (1998), 631--660.
Math. Review 99g:60123
- V. A. Kaimanovich. The Poisson formula for groups with hyperbolic properties.
Annals of Mathematics 152 (2000), 659--692.
Math. Review 2002d:60064
- F. Ledrappier. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires.
C. R. Acad. Sci. Paris, Sér. I 296 (1983), 369--372.
Math. Review 84e:60106
- V. Le Prince. Dimensional properties of the harmonic measure for a random walk on a hyperbolic group.
Trans. of the AMS 359 (2007), 2881--2898.
Math. Review 2286061
- Ya. B. Pesin.
Dimension theory in dynamical systems. Chicago Lect. Notes in Math. (1997).
Math. Review 99b:58003
- L. S. Young. Dimension, entropy and Lyapunov exponents.
Ergod. Th. & Dynam. Sys. 2 (1982), 109--124.
Math. Review 84h:58087
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|