|  |  | 
	|  | |  |  |  |  | |  | 
	|  |  |  | 
	 | 
 
 
 
	| A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space 
 
 |  
		 
			| Vincent  Le Prince, IRMAR, Rennes 
 |  
 
 
			 
				| Abstract We establish  in this paper  an exact formula which links the dimension of the harmonic measure, the asymptotic entropy and the rate of escape for a random walk on a discrete subgroup of the isometry group of a Gromov hyperbolic space. This  completes a result obtained by the author in a previous paper, where only an upper bound for the dimension was proved.
 
 
 
 |  
   | Full text: PDF 
 Pages: 45-53
 
 Published on: February 2, 2008
 
 
 
 |  
                         
                                | Bibliography 
 
 A. Avez. Entropie des groupes de type fini.  
C. R. Acad. Sci. Paris, Sér. A 275 (1972), 1363--1366.
Math. Review  :0324741
 S. Blachère, P. Haïssinsky,  and P. Mathieu. Harmonic measures versus quasiconformal measures for hyperbolic groups. preprint  (2007).
 
M. Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de  Gromov.
 Pacific Journal of Mathematics 159 (1993), 241--270.
Math. Review  94m:57075
 M. Coornaert, T. Delzant, A. Papadopoulos. 
Géométrie et théorie des groupes : les groupes hyperboliques de Gromov. 
Lecture Notes in Math. 1441 (1990), Springer.
Math. Review  92f:57003
Y. Derriennic. Quelques applications du théorème ergodique sous-additif. 
Asterisque 74  (1980), 183--201.
Math. Review  82e:60013
 E. Ghys, P. De La Harpe (eds.).
Sur les Groupes Hyperboliques d'après Mikhael Gromov. Birkhäuser, Basel (1990).
Math. Review  92f:53050
  M. Gromov. 
Hyperbolic groups. Essays in Group Theory (S.M. Gersten, ed.), MSRI Publ. 8 (1987), Springer, New York,  75--263. 
Math. Review  89e:20070
 V. A. Kaimanovich. Hausdorff dimension of the harmonic measure on trees. 
Ergod. Th. & Dynam. Sys. 18 (1998), 631--660.
Math. Review  99g:60123
 V. A. Kaimanovich. The Poisson formula for groups with hyperbolic properties.
Annals of Mathematics 152 (2000), 659--692.
Math. Review  2002d:60064
 F. Ledrappier. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires. 
C. R. Acad. Sci. Paris, Sér. I 296 (1983), 369--372.
Math. Review 84e:60106
 V. Le Prince. Dimensional properties of the harmonic measure for a random walk on a hyperbolic group.   
Trans. of the AMS 359 (2007), 2881--2898.
Math. Review 2286061
Ya. B. Pesin.
Dimension theory in dynamical systems. Chicago Lect. Notes in Math. (1997).
Math. Review 99b:58003
  L. S. Young. Dimension, entropy and Lyapunov exponents.  
Ergod. Th. & Dynam. Sys. 2 (1982), 109--124.
Math. Review 84h:58087
 
 
 
 |  
 
 
 | 
 
 
 
 
 
 
 
 
 
   | 
	|  |   
 
 |  | 
 
	|  | |  |  |  |  | 
 
 Electronic Communications in Probability.   ISSN: 1083-589X |  |