|
|
|
| | | | | |
|
|
|
|
|
On Uniqueness of a Solution of Lu=u^a with Given Trace
|
Sergei E. Kuznetsov, University of Colorado at Boulder |
Abstract
A boundary trace (G, m) of a solution of Delta u = u^a in a bounded smooth domain in R^d was first constructed by Le Gall who described all possible traces for a = 2, d= 2 in which case a solution is defined uniquely by its trace. In a number of publications, Marcus, Veron, Dynkin and Kuznetsov gave analytic and probabilistic generalization of the concept of trace to the case of arbitrary a > 1, d > 1. However, it was shown by Le Gall that the trace, in general, does not define a solution uniquely in case d >= (a +1)/(a -1). He offered a sufficient condition for the uniqueness and conjectured that a uniqueness should be valid if the singular part G of the trace coincides with the set of all explosion points of the measure m. Here, we establish a necessary condition for the uniqueness which implies a negative answer to the above
conjecture.
|
Full text: PDF
Pages: 137-147
Published on: May 7, 2000
|
Bibliography
-
C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Hermann,
Paris, 1975, 1980, 1983, 1987.
MR 58 #7557,
MR 82b:60001,
MR 86b:60003,
MR 88k:60002
-
E. B. Dynkin, Superprocesses and partial differential equations, Ann.
Probab. 21 (1993), 1185--1262.
MR 94j:60156
-
E. B. Dynkin, Stochastic boundary values and boundary singularities for
solutions of the equation L u=u^alpha, J. Functional Analysis
153 (1998), 147--186.
MR 98m:60125
-
E. B. Dynkin and S. E. Kuznetsov, Linear additive functionals of
superdiffusions and related nonlinear p.d.e., Trans. Amer. Math. Soc.
348 (1996), 1959--1987.
MR 97d:60135
-
E. B. Dynkin and S. E. Kuznetsov, Solutions of L u=u^alpha dominated by L-harmonic
functions, Journale d'Analyse Mathematique 68 (1996), 15--37.
MR 97f:35048
-
E. B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear
partial differential equations, Comm. Pure & Appl. Math 49 (1996),
125--176.
MR 97m:60114
-
E. B. Dynkin and S. E. Kuznetsov, Fine topology and fine trace on the boundary associated with a
class of quasilinear differential equations, Comm. Pure & Appl. Math.
51 (1998), 897--936.
MR 99f:35046
-
E. B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a {R}iemannian
manifold and their trace on the Martin boundary, Transact. Amer. Math.
Soc. 350 (1998), 4521--4552.
MR 99c:60168c
-
E. B. Dynkin and S. E. Kuznetsov, Trace on the boundary for solutions of nonlinear differential
equations, Transact. Amer. Math. Soc. 350 (1998), 4499--4519.
MR 99a:60084
-
A. Gmira and L. Veron, Boundary singularities of solutions of some
nonlinear elliptic equations, Duke Math.J. 64 (1991), 271--324.
MR 93a:35053
-
S. E. Kuznetsov, sigma-moderate solutions of Lu=u^alpha and fine
trace on the boundary, C. R. Acad. Sci. Paris, Serie I, 326
(1998), 1189--1194.
MR 99g:35032
-
J.-F. Le Gall, Solutions positives de Delta u=u^2 dans le disque
unité, C.R. Acad. Sci. Paris, Serie I, 317 (1993),
873--878.
MR 94h:35059
-
J.-F. Le Gall, A probabilistic approach to the trace at the boundary for
solutions of a semilinear parabolic differential equation, J. Appl.Math.
Stochast. Analysis 9 (1996), 399--414.
MR 97m:35125
-
J.-F. Le Gall, A probabilistic Poisson representation for positive solutions
of Delta u = u^2 in a planar domain}}, Comm. Pure & Appl Math. (1997),
69--103.
MR 98c:60144
-
M. Marcus and L. Veron, Trace au bord des solutions positives d'équations
elliptiques non linéaires}, C.R. Acad.Sci Paris, Serie I, 321
(1995), 179--184.
MR 96f:35045
-
M. Marcus and L. Veron, Trace au bord des solutions positives d'équations elliptiques
et paraboliques non linéaires. Resultats d'existence and d'unicité,
C.R. Acad.Sci Paris, Serie I, 323 (1996), 603--608.
MR 97f:35012
-
M. Marcus and L. Veron, The boundary trace of positive solutions of semilinear elliptic
equations, I: The subcritical case, Arch. Rat. Mech. Anal. 144
(1998), 201--231.
MR 2000a:35077
-
M. Marcus and L. Veron, The boundary trace of positive solutions of semilinear elliptic
equations: The supercritical case, J. Math. Pures Appl. 77 (1998),
481--524.
MR 99g:35045
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|