![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Linear Speed Large Deviations for Percolation Clusters
|
Yevgeniy Kovchegov, UCLA Mathematics Department, USA Scott Roger Sheffield, Microsoft Research |
Abstract
Let $C_n$ be the origin-containing cluster in subcritical percolation on the lattice $frac{1}{n}
mathbb Z^d$, viewed as a random variable in the space $Omega$ of compact, connected,
origin-containing subsets of $mathbb R^d$, endowed with the Hausdorff metric $delta$. When $d
geq 2$, and $Gamma$ is any open subset of $Omega$, we prove that $$lim_{n rightarrow
infty}frac{1}{n} log P(C_n in Gamma) = -inf_{S in Gamma} lambda(S)$$ where $lambda(S)$ is
the one-dimensional Hausdorff measure of $S$ defined using the {em correlation norm}: $$||u|| :=
lim_{n rightarrow infty} - frac{1}{n} log P (u_n in C_n )$$ where $u_n$ is $u$ rounded to
the nearest element of $frac{1}{n}mathbb Z^d$. Given points $a^1, ldots, a^k in mathbb R^d$,
there are finitely many correlation-norm Steiner trees spanning these points and the origin. We
show that if the $C_n$ are each conditioned to contain the points $a^1_n, ldots, a^k_n$, then the
probability that $C_n$ fails to approximate one of these trees tends to zero exponentially in $n$.
|
Full text: PDF
Pages: 179-183
Published on: December 27, 2003
|
Bibliography
Alexander, K.; Chayes, J. T.; Chayes, L. The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation.
Comm. Math. Phys. 131 (1990), no. 1, 1--50. MR1062747 (91e:82033) |
Campanino, Massimo; Chayes, J. T.; Chayes, L. Gaussian fluctuations of connectivities in the subcritical regime of percolation.
Probab. Theory Related Fields 88 (1991), no. 3, 269--341. MR1100895 (92b:60096) |
Campanino, Massimo; Ioffe, Dmitry. Ornstein-Zernike theory for the Bernoulli bond percolation on $Bbb Zsp d$.
Ann. Probab. 30 (2002), no. 2, 652--682. MR1905854 (2003e:60216) |
Ganesh, Ayalvadi J.; O'Connell, Neil. A large-deviation principle for Dirichlet posteriors.
Bernoulli 6 (2000), no. 6, 1021--1034. MR1809733 (2002g:62071) |
Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications.
Second edition.
Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036 (99d:60030) |
Dobrushin, R.; Koteck'y, R.; Shlosman, S. Wulff construction.
A global shape from local interaction.
Translated from the Russian by the authors.
Translations of Mathematical Monographs, 104. American Mathematical Society, Providence, RI, 1992. x+204 pp. ISBN: 0-8218-4563-2 MR1181197 (93k:82002) |
Edwards, Robert G.; Sokal, Alan D. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm.
Phys. Rev. D (3) 38 (1988), no. 6, 2009--2012. MR0965465 (89i:82003) |
Gilbert, E. N.; Pollak, H. O. Steiner minimal trees.
SIAM J. Appl. Math. 16 1968 1--29. MR0223269 (36 #6317) |
Grimmett, Geoffrey. Percolation.
Second edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114) |
Hwang, Frank K.; Richards, Dana S.; Winter, Pawel. The Steiner tree problem.
Annals of Discrete Mathematics, 53. North-Holland Publishing Co., Amsterdam, 1992. xii+339 pp. ISBN: 0-444-89098-X MR1192785 (94a:05051) |
Mencprime shikov, M. V. Coincidence of critical points in percolation problems.
(Russian) Dokl. Akad. Nauk SSSR 288 (1986), no. 6, 1308--1311. MR0852458 (88k:60175) |
Pisztora, Agoston. Surface order large deviations for Ising, Potts and percolation models.
Probab. Theory Related Fields 104 (1996), no. 4, 427--466. MR1384040 (97d:82016) |
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|