![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Some Changes of Probabilities Related to a Geometric Brownian Motion Version of Pitman's 2M-X Theorem
|
Hiroyuki Matsumoto, Nagoya University Marc Yor, Universite Pierre et Marie Curie |
Abstract
Rogers-Pitman have shown that
the sum of the absolute value of $B^{(mu)}$,
Brownian motion with constant drift $mu$, and its local time
$L^{(mu)}$ is a diffusion $R^{(mu)}$.
We exploit the intertwining relation
between $B^{(mu)}$ and $R^{(mu)}$
to show that the same addition operation
performed on a one-parameter family of diffusions
${X^{(alpha,mu)}}_{alphain{mathbf R}_+}$ yields
the same diffusion $R^{(mu)}$.
Recently we obtained an exponential analogue of the Rogers-Pitman
result. Here we exploit again
the corresponding intertwining relationship
to yield a one-parameter family extension of our result.
|
Full text: PDF
Pages: 15-23
Published on: June 3, 1999
|
Bibliography
-
K. D. Elworthy, X-M. Li and M. Yor,
On the tails of the supremum and the quadratic variation
of strictly local martingales,
S'em. Prob. XXXI, Lecture Notes Math., 1655, 113-125,
Springer-Verlag, Berlin, 1997.
Math. Review 99b:60057
-
K. D. Elworthy, X-M. Li and M. Yor,
The importance of strict local martingales,
applications to radial Ornstein-Uhlenbeck processes,
to appear in Prob. Th. Rel. Fields, 1999.
Math. Review number not available.
-
A. Erdelyi, W. Magnus, F. Oberhettinger,F. G. Tricomi,
Tables of Integral Transforms,I,
McGraw-Hill, New York, 1954.
Math. Review 15,868a
-
W. Feller,
The parabolic differential equations and the associated semi-groups
of transformations,
Ann. Math. 55, (1952) 468-519.
Math. Review 13,948a.
-
D. P. Kennedy,
Some martingales related to cumulative sum tests and
single-server queues,
Stoch. Proc. Appl. 4, (1976) 261-269.
Math. Review 54 #8846.
-
J. Kent,
Some probabilistic properties of Bessel functions,
Ann. Prob. 6, (1978) 760-770.
Math. Review 58 #18750
-
T. G. Kurtz,
Martingale problems for conditional distributions
of Markov processes,
Elect. J. Prob. 3, (1998) 1-29.
Math. Review 1 637 085.
-
N. N. Lebedev,
Special Functions and their Applications,
Dover, New York, 1972.
Math. Review 50 #2568.
-
H. Matsumoto and M. Yor,
A version of Piman's $2M-X$ theorem for geometric Brownian motions,
to appear in C. R. Acad. Sci. Paris, Serie I 328, (1999) 1067-1074.
Math. Review number not available.
-
H. P. McKean, Jr.,
Stochastic Integrals,
Academic Press, New York, 1969.
Math. Review 40 #947.
-
J. W. Pitman and M. Yor,
Bessel processes and infinitely divisible laws,
Stochastic Integrals, ed. by D.Williams,
Lecture Notes Math. 851, 285-370,
Springer-Verlag, Berlin, 1981.
Math. Review 82j:60149
-
D. Revuz and M. Yor,
Continuous Martingales and Brownian Motion, 3rd. Ed.
Springer-Verlag, Berlin, 1999.
Math. Review (for the second edition) 95h:60072.
-
L. C. G. Rogers and J. W. Pitman,
Markov functions,
Ann. Prob. 9, (1981) 573-582.
Math. Review 82j:60133
-
K. Takaoka,
Some remarks on the $L^1$-boundedness and the uniform integrability
of continuous martingales, to appear in S'em. Prob. XXXIII,
Lecture Notes Math., Springer-Verlag, Berlin, 1999.
Math. Review number not available.
-
C. Yoeurp,
Theoreme de Girsanov generalise et grossissement d'une filtration,
Grossissements de filtrations : exemples et applications,
Ed. by, Th. Jeulin and M. Yor,
Lecture Notes Math. 1118, 172-196, 1985.
Math. Review 88h:60104
-
M. Yor,
Some Aspects of Brownian Motion, Part II :
Some Recent Martingale Problems,
Birkhauser, Basel, 1997.
Math. Review 98e:60140
-
S. Watanabe,
On time inversion of one-dimensional diffusion processes,
Z.W. 31, (1975) 115-124.
Math. Review 51 #1983.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|