![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Donsker-Type Theorem for BSDEs
|
Philippe Briand, Université Rennes 1 Bernard Delyon, Université Rennes 1 Jean Mémin, Université Rennes 1 |
Abstract
This paper is devoted to the proof of Donsker's
theorem for backward stochastic differential equations (BSDEs for
short). The main objective is to give a simple method to discretize in
time a BSDE. Our approach is based upon the notion of ``convergence
of filtrations'' and covers the case of a (y,z)-dependent generator.
|
Full text: PDF
Pages: 1-14
Published on: January 10, 2001
|
Bibliography
-
V. Bally,
Approximation scheme for solutions of BSDE,
Backward stochastic differential equations (N. El Karoui and L. Mazliak, eds.),
Pitman Res. Notes Math. Ser., vol. 364, Longman, Harlow, 1997, pp. 177-191.
Math. Review 2000k:60003
.
-
D. Chevance,
Numerical methods for backward stochastic differential
equations,
Numerical methods in finance, Cambridge Univ. Press, Cambridge, 1997,
pp. 232-244.
Math. Review 98i:60051
.
-
D. Chevance,
Résolution numériques des équations
différentielles stochastiques rétrogrades
,
Ph.D. thesis, Université de Provence -- Aix-Marseille I,
Marseille, 1997. Math. Review number not available.
-
F. Coquet, V. Mackevicius, and J. Mémin,
Corrigendum to: ``Stability in D of martingales and backward
equations under discretization of filtration'' [Stochastic Processes
Appl. 75 (1998)]
,
Stochastic Process. Appl. 82 (1999), no. 2, 335-338.
Math. Review 2000e:60089
.
-
F. Coquet, J. Mémin, and L. Slominski,
On weak convergence of filtrations,
Séminaire de Probabilités, XXXV, Lecture Notes in Math.,
Springer, Berlin, to appear.
-
J. Douglas, J. Ma, and Ph. Protter,
Numerical methods for forward-backward stochastic differential
equations
,
Ann. Appl. Probab. 6 (1996), no. 3, 940-968.
Math. Review 97k:60160
.
-
N. El Karoui, S. Peng and M. C. Quenez,
Backward stochastic differential equations in finance,
Math. Finance 7 (1997), no. 1, 1--71.
Math. Review 98d:90030
.
-
J. Jacod,
Convergence en loi de semimartingales et variation quadratique,
Séminaire de Probabilités, XV, Lecture Notes in Math.,
vol. 850, Springer, Berlin, 1981, pp. 547-560.
Math. Review 83c:60071
.
-
J. Ma, Ph. Protter, and J. Yong,
Solving forward-backward stochastic
differential equations explicitly-a four step scheme
,
Probab. Theory Related Fields 98 (1994), no. 3, 339-359.
Math. Review 94m:60118
.
-
J. Ma and J. Yong,
Forward-backward stochastic differential equations and their
applications
,
Lecture Notes in Math., vol. 1702, Springer-Verlag, Berlin, 1999.
Math. Review 2000k:60118
.
-
J. Mémin and L. Slominski,
Condition UT et stabilité en loi des solutions
d'équations différentielles stochastiques
,
Séminaire de Probabilités, XXV, Lecture Notes in Math.,
vol. 1485, Springer, Berlin, 1991, pp. 162-177.
Math. Review 93m:60121
.
-
E. Pardoux and S.Peng,
Adapted solution of a backward stochastic differential equations,
Systems Control Lett. 14 (1990), no. 1, 55--61.
Math. Review 91e:60171
.
-
E. Pardoux and S.Peng,
Backward stochastic differential equations
and quasilinear parabolic partial differential equations
,
in Stochastic partial differential equations and their applications
(Charlotte, NC, 1991), 200--217, Lecture Notes in Control and
Inform. Sci., 176, Springer, Berlin, 1992.
Math. Review 93k:60157
.
-
S. Peng,
Probabilistic interpretation for systems of quasilinear
parabolic partial differential equations
,
Stochastics Stochastics Rep. 37 (1991), no. 1-2, 61--74.
Math. Review 93a:35159
.
-
L. Slominski,
Stability of stochastic differential equations driven by general
semimartingales
,
Dissertationes Math. (Rozprawy Mat.), vol. 349, Polish Academy of
sciences, Warszawa, Poland, 1996.
Math. Review 96m:60132
.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|