  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
Donsker-Type Theorem for BSDEs	   
  
	 | 
  
 
	  
		 
			
			   
Philippe  Briand, Université Rennes 1 Bernard  Delyon, Université Rennes 1 Jean  Mémin, Université Rennes 1 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	This paper is devoted to the proof of Donsker's
theorem for backward stochastic differential equations (BSDEs for
short). The main objective is to give a simple method to discretize in
time a BSDE. Our approach is based upon the notion of ``convergence
of filtrations'' and covers the case of a (y,z)-dependent generator.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1-14
  Published on: January 10, 2001
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
-  
V. Bally, 
Approximation scheme for solutions of BSDE, 
Backward stochastic differential equations (N. El Karoui and L. Mazliak, eds.),
Pitman Res. Notes Math. Ser., vol. 364, Longman, Harlow, 1997, pp. 177-191. 
Math. Review 2000k:60003
. 
 
- 
D. Chevance, 
Numerical methods for backward stochastic differential
equations, 
Numerical methods in finance, Cambridge Univ. Press, Cambridge, 1997,
pp. 232-244. 
Math. Review 98i:60051
.
 
- 
D. Chevance, 
Résolution numériques des équations
différentielles stochastiques rétrogrades 
, 
Ph.D. thesis, Université de Provence -- Aix-Marseille I,
 Marseille, 1997. Math. Review number not available.
 
- 
F. Coquet, V. Mackevicius, and J. Mémin, 
Corrigendum to: ``Stability in D of martingales and backward
equations under discretization of filtration'' [Stochastic Processes
Appl. 75 (1998)]
, 
Stochastic Process. Appl. 82 (1999), no. 2, 335-338.
Math. Review 2000e:60089
.
 
- 
F. Coquet, J. Mémin, and L. Slominski, 
On weak convergence of filtrations, 
Séminaire de Probabilités, XXXV, Lecture Notes in Math.,
Springer, Berlin, to appear. 
 
- 
J. Douglas, J. Ma, and Ph. Protter, 
Numerical methods for forward-backward stochastic differential
equations
, 
Ann. Appl. Probab. 6 (1996), no. 3, 940-968.
Math. Review 97k:60160
.
 
- 
N. El Karoui, S. Peng and M. C. Quenez, 
Backward stochastic differential equations in finance, 
Math. Finance 7 (1997), no. 1, 1--71.
Math. Review 98d:90030
. 
 
- 
J. Jacod, 
Convergence en loi de semimartingales et variation quadratique, 
Séminaire de Probabilités, XV, Lecture Notes in Math.,
 vol. 850, Springer, Berlin, 1981, pp. 547-560.
Math. Review 83c:60071
. 
 
- 
J. Ma, Ph. Protter, and J. Yong, 
Solving forward-backward stochastic
 differential equations explicitly-a four step scheme
, 
Probab. Theory Related Fields 98 (1994), no. 3, 339-359.
Math. Review 94m:60118
.
 
- 
J. Ma and J. Yong, 
Forward-backward stochastic differential equations and their
applications
, 
Lecture Notes in Math., vol. 1702, Springer-Verlag, Berlin, 1999.
Math. Review 2000k:60118
.
 
- 
J. Mémin and L. Slominski, 
Condition UT et stabilité en loi des solutions
d'équations différentielles stochastiques
, 
Séminaire de Probabilités, XXV, Lecture Notes in Math.,
vol. 1485, Springer, Berlin, 1991, pp. 162-177.
Math. Review 93m:60121
.
 
- 
E. Pardoux and S.Peng, 
Adapted solution of a backward stochastic differential equations, 
Systems Control Lett. 14 (1990), no. 1, 55--61. 
Math. Review 91e:60171
. 
 
- 
E. Pardoux and S.Peng, 
Backward stochastic differential equations
and quasilinear parabolic partial differential equations
, 
in Stochastic partial differential equations and their applications
(Charlotte, NC, 1991), 200--217, Lecture Notes in Control and 
Inform. Sci., 176, Springer, Berlin, 1992. 
Math. Review 93k:60157
. 
 
- 
S. Peng, 
 
Probabilistic interpretation for systems of quasilinear
parabolic partial differential equations
, 
Stochastics Stochastics Rep. 37 (1991), no. 1-2, 61--74. 
Math. Review 93a:35159
.
 
- 
L. Slominski, 
Stability of stochastic differential equations driven by general
semimartingales 
, 
Dissertationes Math. (Rozprawy Mat.), vol. 349, Polish Academy of
 sciences, Warszawa, Poland, 1996. 
Math. Review 96m:60132
.
 
 
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Communications in Probability.   ISSN: 1083-589X 	 | 
	 |