![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Spectral gap for the interchange process in a box
|
Abstract
We show that the
spectral gap for the interchange process (and the
symmetric exclusion process) in a
d-dimensional box
of side length L is asymptotic to π2/L2.
This gives more evidence in favor of
Aldous's conjecture that in any graph the spectral gap for the interchange
process is the same as the spectral gap for a corresponding
continuous-time random walk. Our proof uses a technique that is similar to that
used by Handjani and Jungreis, who proved that Aldous's conjecture holds when
the graph is a tree.
|
Full text: PDF
Pages: 311-318
Published on: June 17, 2008
|
Bibliography
-
Benjamini, Itai; Berger, Noam; Hoffman, Christopher; Mossel, Elchanan. Mixing times of the biased card shuffling and the asymmetric exclusion
process.
Trans. Amer. Math. Soc. 357 (2005), no. 8, 3013--3029 (electronic). MR2135733 (2006a:60129)
-
P.G. Doyle, J.L. Snell.
Random walks and electric networks.
Carus Mathematical Monographs 22 (1984) Math. Assoc. America.
Math. Review 89a:94023
-
Cancrini, N.; Martinelli, F. On the spectral gap of Kawasaki dynamics under a mixing condition
revisited.
Probabilistic techniques in equilibrium and nonequilibrium statistical
physics.
J. Math. Phys. 41 (2000), no. 3, 1391--1423. MR1757965 (2002j:82075)
-
Diaconis, Persi; Saloff-Coste, Laurent. Comparison theorems for reversible Markov chains.
Ann. Appl. Probab. 3 (1993), no. 3, 696--730. MR1233621 (94i:60074)
-
Diaconis, P.; Saloff-Coste, L. Logarithmic Sobolev inequalities for finite Markov chains.
Ann. Appl. Probab. 6 (1996), no. 3, 695--750. MR1410112 (97k:60176)
-
Diaconis, Persi; Shahshahani, Mehrdad. Generating a random permutation with random transpositions.
Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 159--179. MR0626813 (82h:60024)
-
Fill, James Allen. Eigenvalue bounds on convergence to stationarity for nonreversible
Markov chains, with an application to the exclusion process.
Ann. Appl. Probab. 1 (1991), no. 1, 62--87. MR1097464 (92h:60104)
-
Handjani, Shirin; Jungreis, Douglas. Rate of convergence for shuffling cards by transpositions.
J. Theoret. Probab. 9 (1996), no. 4, 983--993. MR1419872 (98a:60095)
-
Kipnis, C.; Olla, S.; Varadhan, S. R. S. Hydrodynamics and large deviation for simple exclusion processes.
Comm. Pure Appl. Math. 42 (1989), no. 2, 115--137. MR0978701 (91h:60115)
- Lee, Tzong-Yow; Yau, Horng-Tzer. Logarithmic Sobolev inequality for some models of random walks.
Ann. Probab. 26 (1998), no. 4, 1855--1873. MR1675008 (2001b:60090)
- Liggett, Thomas M. Interacting particle systems.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231 (86e:60089)
- Lu, Sheng Lin; Yau, Horng-Tzer. Spectral gap and logarithmic Sobolev inequality for Kawasaki and
Glauber dynamics.
Comm. Math. Phys. 156 (1993), no. 2, 399--433. MR1233852 (95f:60122)
-
Nachtergaele, Bruno; Starr, Shannon. Ordering of energy levels in Heisenberg models and applications.
Mathematical physics of quantum mechanics,
149--170, Lecture Notes in Phys., 690, Springer, Berlin, 2006. MR2234909 (2007i:82013)
Quastel, Jeremy. Diffusion of color in the simple exclusion process.
Comm. Pure Appl. Math. 45 (1992), no. 6, 623--679. MR1162368 (93e:60198)
-
S. Starr and M. Conomos. Asymptotics of the spectral gap for the
interchange process on large hypercubes. Preprint.
http://front.math.ucdavis.edu/0802.1368
-
Thomas, Lawrence E. Quantum Heisenberg ferromagnets and stochastic exclusion
processes.
J. Math. Phys. 21 (1980), no. 7, 1921--1924. MR0575630 (81f:82007)
-
Wilson, David Bruce. Mixing times of Lozenge tiling and card shuffling Markov chains.
Ann. Appl. Probab. 14 (2004), no. 1, 274--325. MR2023023 (2004m:60155)
-
Yau, Horng-Tzer. Logarithmic Sobolev inequality for generalized simple exclusion
processes.
Probab. Theory Related Fields 109 (1997), no. 4, 507--538. MR1483598 (99f:60171)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|