On the boundedness of Bernoulli processes over thin sets
Rafal Latala, University of Warsaw
Abstract
We show that the Bernoulli conjecture holds for sets with small one-dimensional projections, i.e. any bounded Bernoulli process indexed by such set may be represented as a sum of a uniformly bounded process and a process dominated by a bounded Gaussian process.
X. Fernique.
Regularité des trajectoires des fonctions aléatoires
gaussiennes.
École d'Été de Probabilités de Saint-Flour, IV-1974,
Lecture Notes in Mathematics 480, 1-96, Springer, Berlin, 1975.
Math. Review 54 #1355
M. Ledoux.
The concentration of measure phenomenom.
American Mathematical Society, Providence, RI, 2001.
Math. Review 2003k:28019
M. Ledoux and M. Talagrand.
Probability in Banach spaces. Isoperimetry and processes.
Springer-Verlag, Berlin, 1991.
Math. Review 93c:60001
M. Talagrand.
Regularity of Gaussian processes.
Acta Math.159 (1987), 99-149.
Math. Review 89b:60106
M. Talagrand.
An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities.
Proc. Amer. Math. Soc.104 (1988), 905-909.
Math. Review 90h:60016
M. Talagrand.
Regularity of infinitely divisible processes.
Ann. Probab.21 (1993), 362-432.
Math. Review 94h:60058
M. Talagrand.
The generic chaining. Upper and lower bounds of stochastic processes.
Springer-Verlag, Berlin, 2005. MR2133757
Math. Review 2006b:60006