 |
|
|
| | | | | |
|
|
|
|
|
Central limit theorem for the third moment in space of the Brownian local time increments
|
Yaozhong Hu, University of Kansas David Nualart, University of Kansas |
Abstract
The purpose of this note is to prove a central limit theorem for the
third integrated moment of the Brownian local time increments using techniques of stochastic analysis. The main
ingredients of the proof are an asymptotic version of Knight's
theorem and the Clark-Ocone formula for the third integrated moment of the
Brownian local time increments.
|
Full text: PDF
Pages: 396-410
Published on: September 26, 2010
|
Bibliography
- Barlow, M. T.; Yor, M.
Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times.
J. Funct. Anal. 49 (1982), no. 2, 198--229.
Math. Review 84f:60073
-
Borodin, A. N. Brownian local time.
Russian Math. Surveys 44(1989), 1--51.
Math. Review 90f:60138
-
Chen, X., Li, W., Marcus, M. B. and Rosen, J: A CLT for the $%
L^{2}$ modulus of continiuty of Brownian local time.
Ann. Prob. 38(2010), 396--438.
-
Hu, Y.; Nualart, D. Stochastic integral representation of the $L^{2}$ modulus of
Brownian local time and a central limit theorem.
Electron. Commun. Probab. 14(2009), 529--539.
Math. Review MR2564487
-
Nualart, D. The Malliavin Calculus and Related Topics.
Second edition. Springer Verlag, Berlin, 2006.
Math. Review 2006j:60004
-
Ocone, D. Malliavin calculus and stochastic integral
representation of diffusion processes.
Stochastics 14(1984), 161--185.
Math. Review 86c:93107
-
Perkins, E. Local time is a semimartingale.
Z. Wahrsch. Verw. Gebiete 60 (1982), 79--117.
Math. Review 84e:60117
-
Pitman, J.; Yor, M. Asymptotic laws of planar Brownian motion.
Ann. Prob. 14(1986), no. 3, 733--779.
Math. Review 88a:60145
-
Revuz, D.; Yor, M. Continuous martingales and Brownian motion.
Third edition. Springer-Verlag, Berlin, 1999.
Math. Review 2000h:60050
-
Rogers, L. C. G.; Walsh, J. B. The exact $4/3$-variation
of a process arising from Brownian motion.
Stochastics Stochastics Rep. 51 (1994), no. 3-4, 267--291.
Math. Review 97a:60101
-
Rosen, L. Derivatives of self-intersection local times.
To appear in Séminaire de Probabilités.
-
Rosen, J. A CLT for the third integrated moment of Brownian local time.
To appear in Stochastics and Dynamics.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|