Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 7 (2002) > Paper 11 open journal systems 


Geodesics and Recurrence of Random Walks in Disordered Systems

Daniel Boivin, Université de Bretagne Sud
Jean-Marc Derrien, Université de Bretagne Sud


Abstract
In a first-passage percolation model on the square lattice $Z^2$, if the passage times are independent then the number of geodesics is either $0$ or $+infty$. If the passage times are stationary, ergodic and have a finite moment of order $alpha >1/2$, then the number of geodesics is either $0$ or $+infty$. We construct a model with stationary passage times such that $Elbrack t(e)^alpharbrack

Full text: PDF

Pages: 101-115

Published on: May 15, 2002


Bibliography
  1. BERGER, N. Transience, Recurrence and Critical Behavior for Long-Range Percolation. Preprint.
  2. BREIMAN, L. (1968) Probability, Addison-Wesley Series in Statistics. Addison-Wesley Publishing Company, Reading, Mass. MR 37 #4841
  3. BURTON, R. and KEANE, M. (1989) Density and uniqueness in percolation. Comm. Math. Phys. 121 501 - 505. MR 90g:60090
  4. DE MASI, A., FERRARI, P.A., GOLDSTEIN, S. and WICK, W.D. (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55 787-855. MR 91e:60107
  5. DOYLE, P. and SNELL, J.L. (1984) Random walks and electrical networks. The Carus Mathematical Monographs, 22 The Mathematical Association of America. John Wiley & Sons, New York. MR
  6. DURRETT, R. (1986) Multidimensional random walks in random environments with subclassical limiting behavior, Comm. Math. Phys. 104 87 - 102. MR 87h:60126
  7. GRIMMETT, G. (1989) Percolation. Springer-Verlag. New York. MR 90j:60109
  8. GRIMMETT, G.R., KESTEN, H. and ZHANG, Y. (1993) Random walk on the infinite cluster of the percolation model. Probab. Theory Relat. Fields 96 33-44. MR 94i:60078
  9. HAMMERSLEY, J.M. and WELSH, D.J.A. (1965) First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. Bernoulli-Bayes-Laplace Anniversary Volume , J. Neyman and L.M. LeCam, eds. pp. 61-110, Springer-Verlag New York, N.Y. MR 33 #6731
  10. KOZLOV, S.M. (1985) The averaging method and walks in inhomogeneous environments. Russ. Math. Surv. 40 73-145 ; translation from Usp. Mat. Nauk 40 61-120. MR 87b:60104
  11. KRENGEL, U. (1985) Ergodic Theorems. De Gruyter Studies in Mathematics, 6. Berlin-New York: Walter de Gruyter. MR 87i:28001
  12. LICEA, C. and NEWMAN, C. (1996) Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24 399 - 410. MR 97c:60238
  13. LYONS, T. (1983) A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11 393-402. MR 84e:60102
  14. NEWMAN, C. M. (1997) Topics in disordered systems. Lectures in Mathematics, ETH Z" urich. Basel: Birkhäuser. MR 99e:82052
  15. PERES, Y. (1999) Probability on trees: An introductory climb. Bertoin, J. (ed.) et al., Lectures on probability theory and statistics. Ecole d'été de Probabilités de Saint-Flour XXVII-1997, Saint-Flour, France, July 7-23, 1997. Berlin: Springer. Lect. Notes Math. 1717, 193-280. MR 2001c:60139
  16. WEHR, J. (1997) On the Number of Infinite Geodesics and Ground States in Disordered Systems. J. Stat. Physics 87 439 -447. MR 98k:82087
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X