![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Transition Probability Estimates for Reversible Markov Chains
|
András Telcs, International Business School Budapest |
Abstract
This paper provides transition probability estimates
of transient reversible Markov chains. The key condition of the result
is the spatial symmetry and polynomial decay of the Green's function of
the chain.
|
Full text: PDF
Pages: 29-37
Published on: January 3, 2000
|
Bibliography
-
Barlow, M.T. Random Walks and Diffusion on Fractals, Proc. Int. Congress
Math. Kyoto, 1990
Math
Review 1159287
-
Barlow, M.T., Bass, R., The Construction of the Brownian Motion on the
Sierpinski Carpet, Ann. Inst. H. Poincaré, 25, (1989) 225-257 Math
Review 91d:60183
-
Barlow, M.T., Hambly, B., Transition density estimates for Brownian motion
on scale irregular Sierpinski gaskets, Ann. Inst. H. Poincaré,
33, (1997)
531-559 Math
Review 98k:60137
-
Barlow, M.T., Perkins, E.A. Brownian Motion on the Sierpinski Gasket, Prob.
Th. Rel. Fields, 79, (1988) 543-623 Math
Review 89g60241
-
Carlen, E.A., Kusuoka, S., Stroock, D.W., Upper bounds for symmetric Markov
transition functions, Ann. Inst. H. Poincaré, 23, (1987) 245-287
Math Review
88i:35066
-
Doyle, P.G., Snell, J.L., Random walks and electric networks, The Carus
Mathematical Monographs, 22, 1984 Math
Review 89a:94023
-
Kemeny, G.J., Snell, J.L., Knapp, A.W., Denumerable Markov Chains, 2. ed.
Graduate Text in Mathematics 40, Springer, 1976 Math
Review 53:11748
-
Kusuoka, S., Zhou, X.Y., Dirichlet form on fractals: Poincaré constant
and resistance, J. Theor. Prob. 93, (1992) 169-196 MR not available.
-
Rammal, R., Toulouse, G., Random walks on fractal structures and percolation
clusters, J. Physique Lett. 44, (1983) L-13 - L22. MR not available.
-
Saloff-Coste, L., Isoperimetric Inequalities and decay of iterated kernels
for almost-transitive Markov chains, Combinatorics, Probability and Computing,
4., (1995) 419-442 Math
Review 97c:60171
-
Telcs, A., Random Walks on Graphs, Electric Networks and Fractals, J. Prob.
Theo. and Rel. Fields, 82, (1989) 435-449 Math
Review 90h:60065
-
Telcs, A., Spectra of Graphs and Fractal Dimensions I., J. Prob. Theo. and
Rel. Fields, 85, (1990) 489-497 Math
Review 91k:60075
-
Telcs, A., Spectra of graphs and Fractal dimensions II, J. Theor. Prob.
8, (1995) 77-96 Math
Review 96d:60107
-
Telcs, A. Fractal Dimension and Martin Boundary of Graphs, to appear in
Studia Sci. Math. Hu. MR not available.
-
Varopoulos, N., Saloff-Coste, L., Coulhon, Th., Analysis and Geometry
on Groups, Cambridge University Press, 1993 Math
Review 95f:43008
-
Varopoulos, N. Th., Isoperimetric inequalities and Markov chains, J. Functional
Analysis 63, (1985) 215-239 Math
Review 87e:60124
-
Zhou, Z.Y., Resistance Dimension, Random Walk Dimension and Fractal Dimension,
J. Theor. Prob., 6, (1993) 4., 635-652 Math
Review 96d:60119
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|