|
|
|
| | | | | |
|
|
|
|
|
Continuous Ocone Martingales as Weak Limits of Rescaled Martingales
|
Harry van Zanten, Vrije Universiteit Amsterdam |
Abstract
Consider a martingale $M$ with bounded jumps and two sequences $a_n, b_n to infty$.
We show that if the rescaled martingales
M^n_t =frac{1}{sqrt{a_n}}M_{b_n t}
converge weakly, then the limit is necessarily a continous Ocone martingale.
Necessary and sufficient conditions for the weak convergence of
the rescaled martingales are also given.
|
Full text: PDF
Pages: 215-222
Published on: November 28, 2002
|
Bibliography
-
Beghdadi-Sakrani, S. (2002).
The uniqueness class of continuous local martingales.
Bernoulli 8(2), 207--217.
Math.
Review
-
Coquet, F., Mémin, J. and Vostrikova, L. (1994).
Rate of convergence in the functional limit theorem for likelihood
ratio processes.
Math. Methods Statist. 3(2), 89--113.
Math. Review
-
Dubins, L.E., Émery, M. and Yor, M. (1993).
On the Lévy transformation of Brownian motions and continuous
martingales.
In Séminaire de Probabilités, XXVII, pp. 122--132.
Springer, Berlin.
Math. Review
-
Jacod, J. and Shiryaev, A.N. (1987).
Limit theorems for stochastic processes.
Springer-Verlag, Berlin.
Math. Review
-
Karatzas, I. and Shreve, S.E. (1991).
Brownian motion and stochastic calculus.
Springer-Verlag, New York.
Math. Review
-
Kubilius, K. (1985).
The rate of convergence in the functional central limit theorem for
semimartingales.
Litovsk. Mat. Sb. 25(1), 84--96.
Math. Review
-
Liptser, R.S. and Shiryayev, A.N. (1989).
Theory of martingales.
Kluwer Academic Publishers Group, Dordrecht.
Math. Review
-
Monroe, I. (1972).
On embedding right continuous martingales in {B}rownian motion.
Ann. Math. Statist. 43, 1293--1311.
Math. Review
-
Ocone, D.L. (1993).
A symmetry characterization of conditionally independent increment
martingales.
In Barcelona Seminar on Stochastic Analysis, 1991,
pp. 147--167. Birkh"auser, Basel.
Math. Review
-
Revuz, D. and Yor, M. (2001).
Continuous martingales and Brownian motion.
Springer-Verlag, Berlin, third edition.
Math. Review
-
Van Zanten, J.H. (2000).
A multivariate central limit theorem for continuous local
martingales.
Statist. Probab. Lett. 50(3), 299--235.
Math. Review
-
Vostrikova, L. and Yor, M. (2000).
Some invariance properties (of the laws) of Ocone's martingales.
In Séminaire de Probabilités, XXXIV, pp. 417--431.
Springer, Berlin.
Math. Review
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|