![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Percolation Dimension of Brownian Motion in R^3
|
Chad Fargason, Duke University |
Abstract
Let $B(t)$ be a Brownian motion in $R^3$. A {it subpath} of the Brownian path
$B[0,1]$ is a continuous curve $gamma(t)$, where $gamma[0,1] subseteq B[0,1]$
, $gamma(0) = B(0)$, and $gamma(1) = B(1)$. It is well-known that any subset
$S$ of a Brownian path must have Hausdorff dimension $hdim (S) leq 2.$ This paper proves that with probability one there exist subpaths of $B[0,1]$ with Hausdorff dimension strictly less than 2. Thus the percolation dimension of Brownian motion in $R^3$ is strictly less
than 2.
|
Full text: PDF
Pages: 51-63
Published on: February 27, 1998
|
Bibliography
-
Bass, R. (1995), Probabilistic Techniques in Analysis, Springer-Verlag.
Math Review link
-
Bishop, C., Jones, P., Pemantle, R. an Peres, Y. (1997), the dimension of
the Brownian frontier is greater than 1, J. Funct. Anal. 143, 309-336.
Math Review link
-
Burdzy, K. (1990), Percolation dimension of fractals, J. Math. Anal. Appl.
145, 282-288.
Math Review link
-
Burdzy, K. and Lawler, G. (1990), Non-intersection exponents for random
walks and Brownian motion, Part II: Estimates and applications to a random
fractal, Ann. Probab. 18, 981-1009.
Math Review link
-
Burdzy, K.; (1995), Labyrinth dimension of Brownian trace, Dedicated to the
memory of Jerzy Neyman, Probab. Math. Statist. 15, 165-193.
Math Review link
-
Durrett, R. (1984), Brownian Motion and Martingales in Analysis, Wadsworth.
Math Review link
-
Dvoretsky, A., Erdos, P. and Kakutani, S. (1950), Double
points of paths of Brownian motions in n-space, Acta. Sci. Math. Szeged 12,
75-81.
Math Review article not available.
-
Dvoretsky, A., Erdos, P., Kakutani, S. and Taylor, S. J. (1957), Triple
points of Brownian paths in 3-space, Proc. Cambridge Philos. Soc. 53,
856-862.
Math Review article not available.
-
Falconer, K. (1990), Fractal Geometry, John Wiley & Sons.
Math Review link
-
Kaufman, R. (1969), Une propriete metrique du movement brownien, C. R. Acad.
Sci., Paris 268, 727-728.
Math Review article not available.
-
Lawler, G. (1991), Intersections of Random Walks, Brikhauser-Boston.
Math Review link
-
Lawler, G. (1996), Hausdorff dimension of cut points for Brownian motion,
Electronic J. Probab. 1, paper no. 2.
Math Review link
-
Lawler, G. (1996), The dimension of the frontier of planar Brownian motion,
Electronic Comm. Probab. 1, 29-47.
Math Review link
-
Pemaltle, R. (1997), The probability that Brownian motion almost contains a
line, Ann. Inst. H. Poncare Probab. Statist. 33, 147-165.
Math Review link
-
Perkins, E. and Taylor, S. J. (1987), Uniform measure results for the image
of subsets under Brownian motion, Probab. Theory Relat. Fields 76, 257-289.
Math Review link
-
Revuz, D. and Yor, M. (1991), Continuous Martingales and Brownian Motion,
Springer-Verlag.
Math Review link
-
Werner, W. (1995), An upper bound to the disconnection exponent for
two-dimensional Brownian motion, Bernoulli 1, 371-380.
Math Review link not available.
-
Werner, W. (1996), Bounds for disconnection exponents, Electronic Comm. Prob.
1, 19-28.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|