|
|
|
| | | | | |
|
|
|
|
|
Central Limit Theorems for the Products of Random Matrices Sampled by a Random Walk
|
Frédér Duheille-Bienvenue, Université Claude Bernard - Lyon 1 Nadine Guillotin-Plantard, Université Claude Bernard - Lyon 1 |
Abstract
The purpose of the present paper is to study the asymptotic behaviour of the products of random matrices indexed by
a random walk following the results obtained by Furstenberg and Kesten (MR53:14670)
and by Ishitani (MR 53:14670).
|
Full text: PDF
Pages: 43-50
Published on: April 12, 2003
|
Bibliography
-
BOLTHAUSEN, E.,
A central limit theorem for two-dimensional random
walks in random sceneries,
Ann. Probab.,
(1989), Vol. 17, 108--115.
Math Review link
-
DURRETT, R.,
Probability: theory and examples,
(1991), Wadsworth and Brooks/cole.
Math Review link
-
ERDOS, P., TAYLOR, S.J.,
Some intersection
properties of random walk paths,
Acta Math. Acad. Sci. Hungar.,
(1960), Vol. 11, 231--248.
Math Review link
-
-
FURSTENBERG, H., KESTEN, H.,
Products of random matrices,
Ann. Math. Statist.,
(1960), Vol. 31, 457--469.
Math Review link
-
-
GERL, P., WOESS, W.,
Local limits and harmonic functions for nonisotropic random walks on free groups,
Prob. Theor. Rel. Fields,
(1986), Vol. 71, 341--355.
Math Review link
-
-
ISHITANI, H.,
A central limit theorem for the subadditive process and its application to products of random matrices,
RIMS, Kyoto Univ,
(1977), Vol. 12, 565--575.
Math Review link
-
-
KESTEN, H.,
Symmetric random walks on groups,
Trans. Amer. Math. Soc.,
(1959), Vol. 92, 336--354.
Math Review link
-
-
KESTEN, H., SPITZER, F.,
A limit theorem related to a new
class of self-similar processes,
Z. Wahrsch. Verw. Gebiete,
(1979), Vol. 50, 5--25.
Math Review link
-
-
SPITZER, F.L.,
Principles of random walks,
(1976), Second Edition, Springer, New York.
Math Review link
-
-
STONE, C.,
On local and ratio limit theorems,
(1967), Proc. Fifth Berkeley Symp.
Math Review link
-
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|