|
|
|
| | | | | |
|
|
|
|
|
The size of a pond in 2D invasion percolation
|
Jacob van den Berg, CWI and Vrije Universiteit Antal A. Jarai, Carleton University Balint Vagvolgyi, Vrije Universiteit |
Abstract
We consider invasion percolation on the square lattice.
van den Berg, Peres, Sidoravicius and Vares have proved that
the probability that the radius of a so-called
pond is larger than n, differs at most a factor of order
log n from the probability that in critical Bernoulli percolation the radius of
an open cluster is larger than n.
We show that these two probabilities are, in fact, of the
same order. Moreover, we prove an analogous result for the volume of a
pond.
|
Full text: PDF
Pages: 411-420
Published on: October 26, 2007
|
Bibliography
- O. Angel, J. Goodman, F. den Hollander and G. Slade.
Invasion percolation on regular trees.
Preprint (2006).
arXiv:math/0608132v1
- J. van den Berg and H. Kesten.
Inequalities with application to percolation and reliability.
J. Appl. Prob.
22 (1985), 556-569.
Math. Review 0799280
- J. van den Berg, Y. Peres, V. Sidoravicius and M.E. Vares.
Random spatial growth with paralyzing obstacles.
Preprint (2007).
arXiv:0706.0219
- J.T. Chayes, L. Chayes and C.M. Newman.
Stochastic geometry of invasion percolation.
Commun. Math. Phys.
101 (1985), 383-407.
Math. Review 0815191
- J.T. Chayes, L. Chayes and C.M. Newman.
Bernoulli percolation above threshold: An invasion percolation analysis.
Ann. Probab.
15 (1987), 1272-1287.
Math. Review 0905331
- G.R. Grimmett.
Percolation.
Second edition.
Grundlehren der Mathematischen Wissenschaften 321 (1999),
Springer-Verlag, Berlin.
Math. Review 1707339
- A.A. Járai.
Invasion percolation and the incipient infinite cluster in 2D.
Commun. Math. Phys.
236 (2003), 311-314.
Math. Review 1981994
- H. Kesten.
The incipient infinite cluster in two-dimensional percolation.
Probab. Theory Related Fields
73 (1986), 369-394.
Math. Review 0859839
- H. Kesten.
Scaling relations for 2D percolation.
Commun. Math. Phys.
109 (1987), 109-156.
Math. Review 0879034
- R. Lyons, Y. Peres and O. Schramm.
Minimal spanning forests.
Ann. Probab.
34 (2006), 1665-1692.
Math. Review 2271476
- B.G. Nguyen.
Typical cluster size for two-dimensional percolation processes.
J. Stat. Phys.
50 (1987), 715-726.
Math. Review 0939507
- G.F. Lawler, O. Schramm and W. Werner.
One-arm exponent for critical 2D percolation.
Electron. J. Probab.
2 (2002), 13 pp., electronic.
Math. Review 1887622
- D.L. Stein and C.M. Newman.
Broken ergodicity and the geometry of rugged landscapes.
Phys. Rev. E
51 (1995), 5228-5238.
Math. Review number not available.
- D. Wilkinson and J.F. Willemsen. Invasion
percolation: A new form of percolation theory.
J. Phys. A.
16 (1983), 3365-3376.
Math. Review 0725616
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|