|
|
|
| | | | | |
|
|
|
|
|
On the lower bound of the spectral norm of symmetric random matrices with independent entries
|
Sandrine Peche, Institut Fourier, Grenoble, France Alexander Soshnikov, University of California at Davis, USA |
Abstract
We show that the spectral radius of an N-dimensional random symmetric matrix with i.i.d. bounded centered but non-symmetrically
distributed entries is bounded from below by 2σ - o(N-6/11+ε), where σ2 is the the variance of the matrix entries and ε > 0 is an arbitrary small positive number. Combining with our previous result from [7], this proves
that for any ε > 0 one has ||AN|| = 2σ + o(N-6/11+ε)
with probability going to 1 as N goes to infinity.
|
Full text: PDF
Pages: 280-290
Published on: June 1, 2008
|
Bibliography
-
N.Alon, M. Krivelevich, and V.Vu,
On the concentration of eigenvalues of random symmetric matrices.
Israel J. Math. 131 (2002), 259-267.
Math. Review MR1942311
-
L.Arnold.
On the asymptotic distribution of the eigenvalues of random matrices.
J. Math. Anal. Appl. 20 (1967), 262-268.
Math. Review MR0217833
-
D.J. Daley, D.Vere-Jones.
An Introduction to the Theory of Point Processes, Vol.I, Elementary theory and methods.
Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2003. xxii+469 pp. ISBN
0-387-95541-0
Math. Review 2004c:60001
-
Z. F"{u}redi and J. Koml'os.
The eigenvalues of random symmetric matrices.
Combinatorica 1
(1981), 233-241.
Math. Review 83e:15010
-
A. Guionnet and O. Zeitouni.
Concentration of the spectral measure for large matrices.
Electron. Comm. Probab. 5
(2000), 119-136.
Math. Review 2001k:15035
-
M. Ledoux.
The Concentration of Measure Phenomenon.
Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001.
x+181 pp. ISBN 0-8218-2864-9
Math. Review 2003k:28019
-
M. Ledoux.
Concentration of measure and logarithmic Sobolev inequalities.
Séminaire de Probabilités, XXXIII, 120--216, Lecture Notes in Math., 1709, Springer, Berlin, 1999.
Math. Review 2002j:60002
-
S.Péché and A. Soshnikov.
Wigner random matrices with non-symmetrically distributed entries.
J. Stat. Phys. 129 (2007), 857-884.
-
Y. Sinai and A. Soshnikov.
Central limit theorem for traces of large random symmetric matrices with independent matrix elements.
Bol. Soc. Brasil. Mat. (N.S.)29 (1998), 1-24.
Math. Review 99f:60053
-
Y. Sinai and A. Soshnikov.
A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random
symmetric matrices.
Funct. Anal. Appl.32 (1998), 114-131.
Math. Review 2000c:82041
-
A.Soshnikov.
Universality at the edge of the spectrum in Wigner random matrices.
Commun. Math. Phys.207, (1999), 697-733.
Math. Review 2001i:82037
-
M. Talagrand.
Concentration of measures and isoperimetric inequalities in product spaces.
Inst. Hautes Études Sci. Publications Mathematiques 81, (1996), 73-205.
Math. Review 97h:60016
-
C.A.Tracy, H.Widom.
Level-spacing distribution and the Airy kernel.
Commun. Math. Phys.
159, (1994), 151-174.
Math. Review 95e:82003
-
C.A.Tracy, H.Widom. On orthogonal and symplectic random matrix ensembles.
Commun. Math. Phys.177
(1996), 724-754.
Math. Review 97a:82055
-
V.H. Vu.
Spectral norm of random matrices.
STOC'05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing.
423--430, ACM, New York, 2005.
Math. Review 2006h:15025
-
E.Wigner.
Characteristic vectors of bordered matrices with infinite dimensions.
Ann. of Math.62, (1955),548-564.
Math. Review 17,1097c
-
E.Wigner.
On the distribution of the roots of certain symmetric matrices.
Ann. of Math.67, (1958),325-328.
Math. Review MR0095527
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|