Uniform Upper Bound for a Stable Measure of a Small Ball
Michal Ryznar, Wroclaw University of Technology Tomasz Zak, Wroclaw University of Technology
Abstract
P. Hitczenko, S.Kwapien, W.N.Li, G.Schechtman, T.Schlumprecht and J.Zinn
stated the following conjecture.
Let $mu$ be a symmetric $alpha$-stable measure on a separable Banach
space and $B$ a centered ball such that $mu(B)le b$.
Then there exists a constant $R(b)$, depending only on $b$, such that
$mu(tB)le R(b)tmu(B)$ for
all $0 < t < 1$.
We prove that the above inequality holds but the constant $R$ must
depend also on $alpha$.
P. Hitczenko, S. Kwapien, W.N. Li, G. Schechtman, T. Schlumprecht and
J. Zinn (1998),
Hypercontractivity and comparison of moments of iterated maxima
and minima of independent random variables.
Electronic Journal of Probability 3, 1-26,
Paper 2
.
R. LePage, M. Woodroofe and J. Zinn (1981),
Convergence to a stable distribution via order statistics.
Ann. Probab.9,624-632.
Math. Review 82k:60049
M. Lewandowski, M. Ryznar and T. Zak (1992),
Stable measure of a small ball.
Proc. Amer. Math. Soc.115,489-494.
Math. Review 92i:60004
N. Cressie (1975),
A note on the behaviour of the stable distribution for small index $alpha$.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 33,61-64.
Math. Review 52:1825