![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Law of the Hitting Times to Points by a Stable Lévy Process with No Negative Jumps
|
Goran Peskir, The University of Manchester |
Abstract
Let $X=(X_t)_{t ge 0}$ be a stable L'evy process of index $alpha
in (1,2)$ with the L'evy measure $nu(dx) = (c/x^{1+alpha}):!
I_{(0,infty)}(x), dx$ for $c>0$, let $x>0$ be given and fixed, and
let $tau_x = inf, {, t>0 : X_t=x, }$ denote the first hitting
time of $X$ to $x$. Then the density function $f_{tau_x}$ of
$tau_x$ admits the following series representation:
begin{align} notag
f_{tau_x}(t) = frac{x^{alpha-1}}{pi:! (c;! Gamma(-alpha)
;!t)^{2-1/alpha}} sum_{n=1}^infty bigg[:! &(-1)^{n-1}
sin(pi/alpha), frac{Gamma(n!-!1/alpha)}{Gamma(alpha
n!-!1)}, Big(frac{x^alpha}{c;! Gamma(-alpha);!t}
Big)^{!n-1} notag &- sinBig(frac{n pi}{alpha}Big),
frac{Gamma(1!+!n/alpha)}{n!}, Big(frac{x^alpha}{c;!
Gamma(-alpha);!t}Big)^{!(n+1)/alpha-1}, bigg]
end{align}
for $t>0$. In particular, this yields $f_{tau_x}(0+)=0$ and
begin{equation} notag
f_{tau_x}(t) sim frac{x^{alpha-1}}{Gamma(alpha!-!1),
Gamma(1/alpha)}, (c;! Gamma(-alpha);!t)^{-2+1/alpha}
end{equation}
as $t rightarrow infty$. The method of proof exploits a simple
identity linking the law of $tau_x$ to the laws of $X_t$ and
$sup_{,0 le s le t} X_s$ that makes a Laplace inversion
amenable. A simpler series representation for $f_{tau_x}$ is also
known to be valid when $x<0$.
|
Full text: PDF
Pages: 653-659
Published on: December 19, 2008
|
Bibliography
-
Bernyk, V. Dalang, R. C. and Peskir, G. (2008). The law of the
supremum of a stable Lévy process with no negative jumps. Ann.
Probab. 36 (1777-1789). MR2440923 (A review for this item is
in process).
-
Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press.
Math. Review 98e:60117
-
Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and
Potential Theory. Academic Press.
Math. Review 41 #9348
-
Borovkov, K. and Burq, Z. (2001). Kendall's identity for the first
crossing time revisited. Electron. Comm. Probab. 6 (91-94).
Math. Review 2002i:60099
-
Braaksma, B. L. J. (1964). Asymptotic expansions and analytic
continuations for a class of Barnes-integrals. Compositio
Math. 15 (239-341). MR not available.
-
Doney, R. A. (1991). Hitting probabilities for spectrally positive
Lévy processes. J. London Math. Soc. 44 (566-576).
Math. Review 93b:60166
-
Doney, R. A. (2008). A note on the supremum of a stable process.
Stochastics 80 (151-155). MR2402160 (A review for this
item is in process).
-
Erdélyi, A. (1954). Tables of Integral Transforms, Vol. 1.
McGraw-Hill.
Math. Review 15,868a
-
Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of
Lévy Processes with Applications. Springer-Verlag.
Math. Review 2008a:60003
-
Monrad, D. (1976). Lévy processes: absolute continuity of
hitting times for points. Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 37 (43-49).
Math. Review 54 #11526
-
Peskir, G. (2002). On integral equations arising in the
first-passage problem for Brownian motion. J. Integral Equations
Appl. 14 (397-423).
Math. Review 2004c:60235
-
Pollard, H. (1946). The representation of $e^{-x^lambda$ as a
Laplace integral. Bull. Amer. Math. Soc. 52 (908-910).
Math. Review 8,269a
-
Pollard, H. (1948). The completely monotonic character of the
Mittag-Leffler function $E_a(-x)$. Bull. Amer. Math. Soc. 54
(1115-1116).
Math. Review 10,295e
-
Sato, K. (1999). Lévy Processes and Infinitely Divisible
Distributions. Cambridge Univ. Press.
Math. Review 2003b:60064
-
Schneider, W. R. (1986). Stable distributions: Fox functions
representation and generalization. Proc. Stoch. Process. Class.
Quant. Syst. (Ascona 1985), Lecture Notes in Phys. 262, Springer
(497-511).
Math. Review 88d:60050
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|