Johan Wästlund, Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
Abstract
The edges of the complete graph on n vertices are assigned independent exponentially distributed costs. A k-matching is a set of k edges of which no two have a vertex in common. We obtain explicit bounds on the expected value of the minimum total cost C_{k,n} of a k-matching. In particular we prove that if n = 2k then π2/12 < EC_{k,n} < π2/12 + log n/n.
D. Aldous.
Asymptotics in the random assignment problem.
Probab. Theory Relat. Fields93 (1992), 507-534.
Math. Review 94b:60013
D. Aldous.
The zeta(2) limit in the random assignment problem.
Random Structures Algorithms18 (2001), 381-418.
Math. Review 2002f:60015
D. Coppersmith and G. Sorkin.
Constructive bounds and exact expectations for the random assignment problem.
Random Structures Algorithms15 (1999), 113-144.
Math. Review 2001j:05096
S. Linusson and J. Wästlund.
A proof of Parisi's conjecture on the random assignment problem.
Probab. Theory Relat. Fields128 (2004), 419-440.
Math. Review 2004m:90102
M. Mézard and G. Parisi.
Replicas and optimization.
Journal de Physique Lettres46 (1985), 771-778.
Math. Review number not available.
M. Mézard and G. Parisi.
On the solution of the random link matching problems.
Journal de Physique Lettres48 (1987), 1451-1459.
Math. Review number not available.
C. Nair, B. Prabhakar and M. Sharma.
Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures.
Random Structures Algorithms27 (2005), 413-444.
Math. Review 2006e:90050
G. Parisi, Giorgio.
A conjecture on random bipartite matching.
arXiv:cond-mat/9801176 (1998).
Math. Review number not available.
J. Wästlund, Johan.
An easy proof of the zeta(2) limit in the random assignment problem.
Math. Review number not available.