|
|
|
| | | | | |
|
|
|
|
|
Compositions of mappings
of infinitely divisible distributions
with applications to finding
the limits of some nested subclasses
|
Makoto Maejima, Keio University Yohei Ueda, Keio University |
Abstract
Let {Xt(μ),t≥ 0} be a Lévy process on Rd whose distribution at time 1 is μ,
and let f be a nonrandom measurable function on (0, a), 0<a≤ ∞.
Then we can define a mapping Φf(μ) by the law of ∫0af(t)dXt(μ),
from D(Φf) which is the totality of μ∈ I(Rd)
such that the stochastic integral ∫0af(t)dXt(μ) is definable,
into a class of infinitely divisible distributions.
For m∈N, let Φfm be the m times composition of Φf itself.
Maejima and Sato (2009) proved that the limits ∩m=1∞Φfm(D(Φfm))
are the same for several known f's.
Maejima and Nakahara (2009) introduced more general f's.
In this paper, the limits ∩m=1∞Φfm(D(Φfm))
for such general f's are investigated by
using the idea of compositions of suitable mappings of infinitely divisible distributions.
|
Full text: PDF
Pages: 227-239
Published on: June 28, 2010
|
Bibliography
-
C. Alf and T.A. O'Connor.
Unimodality of the Lévy spectral function.
Pacific J. Math. 69 (1977), 285-290.
MR438424
-
T. Aoyama, A. Lindner, and M. Maejima.
A new family of mappings of infinitely divisible distributions
related to the Goldie-Steutel-Bondesson class.
Preprint, 2010.
-
T. Aoyama, M. Maejima, and J. Rosiński.
A subclass of type G selfdecomposable distributions on Rd.
J. Theor. Probab. 21 (2008), 14-34.
MR2384471
-
O.E. Barndorff-Nielsen, M. Maejima, and K. Sato.
Some classes of multivariate infinitely divisible distributions
admitting stochastic integral representations.
Bernoulli 12 (2006), 1-33.
MR2202318
-
O.E. Barndorff-Nielsen, J. Rosinski, and S. Thorbjørnsen.
General $Upsilon$-transformations.
ALEA, Lat. Am. J. Probab. Math. Stat. 4 (2008), 131-165.
MR2421179
-
O.E. Barndorff-Nielsen and S. Thorbjørnsen.
A connection between free and classical infinite divisibility.
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7 (2004), 573-590.
MR2105912
-
Z.J. Jurek.
Limit distributions and one-parameter groups of linear operators on
Banach spaces.
J. Multivariate Anal. 13 (1983), 578-604.
MR727042
-
Z.J. Jurek.
Relations between the s-selfdecomposable and selfdecomposable
measures.
Ann. Probab. 13 (1985), 592-608.
MR781426
-
Z.J. Jurek.
Random integral representations for classes of limit distributions
similar to Lévy class L0.
Probab. Theory Relat. Fields 78 (1988), 473-490.
MR949185
-
Z.J. Jurek.
Random integral representations for classes of limit distributions
similar to Lévy class L0. II.
Nagoya Math. J. 114 (1989), 53-64.
MR1001488
-
Z.J. Jurek.
Random integral representations for classes of limit distributions
similar to Lévy class L0. III.
Probability in Banach Spaces, 8 137-151, Progr. Probab., 30, Birkhäuser Boston, Boston, MA, 1992.
MR1227616
-
Z.J. Jurek.
The random integral representation hypothesis revisited: new classes
of s-selfdecomposable laws.
Abstract and applied analysis, 479-498,World Sci. Publ., River Edge, NJ, 2004.
MR2095121
-
Z.J. Jurek.
Random integral representations for free-infinitely divisible and
tempered stable distributions.
Stat. Probab. Lett. 77 (2007), 417-425.
MR2339047
-
Z.J. Jurek and B.M. Schreiber.
Fourier transforms of measures from the classes $mathcal Usb
beta, -2 J. Multivariate Anal. 41 (1992), 194-211.
MR1172896
-
Z.J. Jurek and W. Vervaat.
An integral representation for selfdecomposable Banach space valued
random variables.
Z. Wahrscheinlichkeitstheor. Verw. Geb. 62 (1983), 247-262.
MR688989
-
M. Maejima, M. Matsui, and M. Suzuki.
Classes of infinitely divisible distributions on Rd
related to the class of selfdecomposable distributions.
To appear in Tokyo J. Math., 2010.
-
M. Maejima and G. Nakahara.
A note on new classes of infinitely divisible distributions on
Rd.
Electron. Commun. Probab. 14 (2009), 358-371.
MR2535084
-
M. Maejima and K. Sato.
The limits of nested subclasses of several classes of infinitely
divisible distributions are identical with the closure of the class of stable
distributions.
Probab. Theory Relat. Fields 145 (2009), 119-142.
MR2520123
-
M. Maejima and Y. Ueda.
Nested subclasses of the class of α-selfdecomposable
distributions.
Preprint, 2009.
-
M. Maejima and Y. Ueda.
Stochastic integral characterizations of semi-selfdecomposable
distributions and related Ornstein-Uhlenbeck type processes.
Commun. Stoch. Anal. 3 (2009), 349-367.
MR2604007
-
T.A. O'Connor.
Infinitely divisible distributions similar to class L distributions.
Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 265-271.
MR554546
-
T.A. O'Connor.
Some classes of limit laws containing the stable distributions.
Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 25-33.
MR606003
-
A. Rocha-Arteaga and K. Sato.
Topics in Infinitely Divisible Distributions and Lévy
Processes.
Aportaciones Matemáticas, Investigación 17, Sociedad
Matemática Mexicana, 2003.
MR2042245
-
K. Sato.
Class L of multivariate distributions and its subclasses.
J. Multivariate Anal. 10 (1980), 207-232.
MR575925
-
K. Sato.
Stochastic integrals in additive processes and application to
semi-Lévy processes.
Osaka J. Math. 41 (2004), 211-236.
MR2040073
-
K. Sato.
Additive processes and stochastic integrals.
Illinois J. Math. 50 (2006). 825-851.
MR2247848
-
K. Sato.
Two families of improper stochastic integrals with respect to Lévy
processes.
ALEA, Lat. Am. J. Probab. Math. Stat. 1 (2006), 47-87.
MR2235174
-
K. Sato.
Memos privately communicated, 2007-2009.
-
K. Sato and M. Yamazato.
Operator-selfdecomposable distributions as limit distributions of
processes of Ornstein-Uhlenbeck type.
Stochastic Process. Appl. 17 (1984), 73-100.
MR738769
-
S.J. Wolfe.
On a continuous analogue of the stochastic difference equation
Xn=ρ Xn-1+Bn.
Stochastic Process. Appl. 12 (1982), 301-312.
MR656279
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|