![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Oded Schramm, Microsoft Research |
Abstract
Let A be an arc on the boundary
of the unit disk U.
We prove an asymptotic formula
for the probability that there is a percolation cluster K
for critical site percolation on the triangular grid
in U which intersects A and such that 0 is surrounded
by the union of K and A.
|
Full text: PDF
Pages: 115-120
Published on: October 24, 2001
|
Bibliography
- John Cardy.
Conformal Invariance and Percolation, math-ph/0103018.
- John L. Cardy.
Critical percolation in finite geometries.
J. Phys. A, 25 no. 4 pp. L201-L206, 1992, MR92m:82048.
- Arthur Erdélyi, Wilhelm Magnus, Fritz
Oberhettinger, and Francesco G. Tricomi.
Higher transcendental functions. Vol. I.
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953, MR15,419i.
Based, in part, on notes left by Harry Bateman.
- Geoffrey Grimmett.
Percolation.
Springer-Verlag, New York, 1989, MR90j:60109.
- Harry Kesten.
Percolation theory for mathematicians.
Birkhäuser Boston, Mass., 1982, MR84i:60145.
- Robert Langlands, Philippe Pouliot, and Yvan
Saint-Aubin.
Conformal invariance in two-dimensional percolation.
Bull. Amer. Math. Soc. (N.S.), 30 no. 1 pp. 1-61, 1994, MR94e:82056.
- Gregory F. Lawler, Oded Schramm, and Wendelin
Werner.
Values of Brownian intersection exponents I: Half-plane exponents, math.PR/9911084.
- Steffen Rohde and Oded Schramm.
Basic properties of SLE, math.PR/0106036.
- Oded Schramm.
Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math., 118 pp. 221-288, 2000, MR1 776 084.
- Stanislav Smirnov.
In preparation.
- Stanislav Smirnov.
Critical percolation in the plane. I. Conformal invariance and Cardy's
formula. II. Continuum scaling limit.
Preprint.
- G. M. T. Watts.
A crossing probability for critical percolation in two dimensions.
J. Phys. A, 29 no. 14 pp. L363-L368, 1996, MR98a:82059.
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|