|
|
|
| | | | | |
|
|
|
|
|
Random walks with k-wise independent increments
|
Itai Benjamini, The Weizmann Institute of Science Gady Kozma, The Weizmann Institute of Science Dan Romik, University of California, Berkeley |
Abstract
We construct examples of a random walk with pairwise-independent steps which is almost surely bounded, and for any m and k a random walk with k-wise independent steps which has no stationary distribution modulo m.
|
Full text: PDF
Pages: 100-107
Published on: July 6, 2006
|
Bibliography
- Alon, Noga; Spencer, Joel H. The probabilistic method.
Optimization. Wiley-Interscience [John Wiley & Sons], New York, 2000. xviii+301 pp. ISBN: 0-471-37046-0 MR1885388 (2003f:60003)
- Janson, Svante. Some pairwise independent sequences for which the central limit theorem
Stochastics 23 (1988), no. 4, 439--448. MR0943814 (89e:60048)
- Joffe, A. On a set of almost deterministic $k$-independent random variables.
Ann. Probability 2 (1974), no. 1, 161--162. MR0356150 (50 #8621)
- Schipp, F.; Wade, W. R.; Simon, P.. Walsh series.
Adam Hilger, Ltd., Bristol, 1990. x+560 pp. ISBN: 0-7503-0068-X MR1117682 (92g:42001)
- Wade, William R. Dyadic harmonic analysis.
313--350, Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997. MR1467014 (98m:42046)
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|