Loop-Erased Random Walks, Spanning Trees and Hamiltonian Cycles
Philippe Marchal, Université Paris 6
Abstract
We establish a formula for the distribution of loop-erased random walks
at certain random times. Several classical results on spanning trees,
including Wilson's algorithm, follow easily, as well as a method to construct
random Hamiltonian cycles.
D. Aldous and J. Fill. Reversible Markov Chains. To appear.
R. Burton and R. Pemantle.
Local characteristics, entropy and limit theorems for spanning trees
and domino tilings via transfer-impedances.
Ann. Probab. 21 (1993), no. 3, 1329--1371.
Math. Review 94m:60019
G.F. Lawler. Loop-erased random walk.
Perplexing Problems in Probability, Birkhauser-Boston
(1999), 197--217.
I. Benjamini, R. Lyons, Y. Peres and O. Schramm.
Uniform spanning forests. To appear, Ann Probab.
G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der
Untersuchung der linearen Verteilung galvanischer Ströme geführt wird.
Ann. Phys. Chem. 72 (1847) 497--08.
R. Kenyon. The asymptotic determinant of the discrete Laplacian.
Preprint (1999).
R. Lyons and Y. Peres. Probability on Trees and Networks.
To appear.
J.G. Propp and D.B. Wilson.
How to get a perfectly random sample from a generic Markov chain and
generate a random spanning tree of a directed graph.
7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996).
J. Algorithms 27 (1998), no. 2, 170--217.
Math. Review 99g:60116