  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
On Subordinators, Self-Similar Markov Processes and Some Factorizations of the Exponential Variable	   
  
	 | 
  
 
	  
		 
			
			   
Jean  Bertoin, Universite Pierre et Marie Curie Marc  Yor, Universite Pierre et Marie Curie 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	Let $xi$ be a subordinator with Laplace
exponent $Phi$, $I=int_{0}^{infty}exp(-xi_s)ds$ the so-called 
exponential functional, and $X$ (respectively, $hat X$) the self-similar Markov
process obtained from $xi$ (respectively, from $hat{xi}=-xi$) by Lamperti's
transformation. We establish the existence of a unique probability measure
$rho$ on $]0,infty[$ with $k$-th moment given for
every $kinN$ by the product $Phi(1)cdotsPhi(k)$, and 
which bears some remarkable
connections with the preceding variables. In particular we show that if $R$ is an independent
random variable with law
$rho$ then $IR$ is a standard exponential variable, that the function
$ttoE(1/X_t)$ coincides with the Laplace transform of
$rho$, and that $rho$ is the $1$-invariant distribution of the sub-markovian
process $hat X$.
A number of known factorizations of an exponential variable are shown to be of the preceding
form $IR$ for various subordinators $xi$.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 95-106
  Published on: November 5, 2001
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
- 
M. Barlow, J. Pitman and M. Yor (1989). Une extension multidimensionnelle de
la loi de l'arcsinus  Séminaire
de Probabilités XXIII, pp. 275-293, Lecture Notes in Math., 1372, Springer, Berlin.
Math. Review 
91c:60106 .
 - 
J. Bertoin (1996).
  Lévy processes . Cambridge University Press.
Math. Review 98e:60117 .
 - 
J. Bertoin (1999). Subordinators: Examples and Applications. 
Ecole d'été de Probabilités de St-Flour , pp. 1-91, Lect. Notes in
Maths 1717, Springer, Berlin.
Math. Review CMP 1 746 300 .
 -  J. Bertoin and M.-E. Caballero (2001). Entrance from $0+$
for increasing semi-stable Markov processes. To appear in  Bernoulli .
 -  J. Bertoin and
M. Yor (2001). Entrance laws of self-similar Markov processes and exponential
functionals of Lévy processes. To appear in  Potential Analysis .
 -  P. Carmona, F. Petit and M. Yor (1994). Sur les fonctionnelles exponentielles
de certains processus de Lévy.  Stochastics and Stochastics Reports  47, 71-101.
Math. Review 2001f:60047 .
 -  P. Carmona, F. Petit and M. Yor (1997). On the distribution and asymptotic
results for exponential functionals of Levy processes. In: M. Yor (editor)  Exponential
functionals and principal values related to Brownian motion, pp. 73-121. Biblioteca de la
Revista Matematica Iberoamericana.
Math. Review 99h:60144 .
 -  P. Carmona, F. Petit and M. Yor (2001). Exponential
functionals of Lévy processes.
O. Barndorff-Nielsen, T. Mikosch and
S. Resnick (editors).  Lévy processes: theory and applications, pp. 41-55,
Birkhauser.
 -  H. K. Gjessing and J. Paulsen (1997). Present value
distributions with application to ruin theory and stochastic equations.
 Stochastic Process. Appl. 71, 123-144.
Math. Review 99b:60068 .
 -  M. Gradinaru, B. Roynette, P. Vallois, and M. Yor (1999). Abel
transform and integrals of Bessel local times.  Ann. Inst. H. Poincaré Probab. Statist.
 35, 531-572. 
Math. Review 2000i:60085 .
 -  J. W. Lamperti (1972). Semi-stable Markov processes.  Z.
Wahrscheinlichkeitstheorie verw. Gebiete 22, 205-225. 
Math. Review 46 #6478 .
 -  G. Letac (1985). A characterization of the Gamma distribution.  Adv. Appl. Prob.  17, 911-912. 
Math. Review 87b:62016 .
 -  J. Pitman and M. Yor (1997). On the lengths of excursions of some Markov
processes.  Séminaire
de Probabilités  XXXI, pp. 272-286, Lecture Notes in Math., 1655, Springer, Berlin.
Math. Review 98j:60108 .
 -  J. Pitman and M. Yor (1997). On the relative lengths of excursions derived
from a stable subordinator.  Séminaire de Probabilités  XXXI, pp. 287-305, Lecture
Notes in Math., 1655, Springer, Berlin.
Math. Review 
99a:60083 .
 -  D. N. Shanbhag and M. Sreehari (1977). On certain self-decomposable
distributions.  Z. Wahrscheinlichkeitstheorie und Verw. Gebiete  38,
217-222. 
Math. Review 55 #9214 .
 -  D. N. Shanbhag and M. Sreehari (1979).
An extension of Goldie's result and further results in infinite divisibility.  Z. Wahrsch.
Verw. Gebiete  47, 19-25. 
Math. Review 80e:60023 .
 -  D. Williams (1979).
Diffusions, Markov processes, and martingales vol. 1:
Foundations.  Wiley, New-York.
Math. Review 80i:60100 .
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Communications in Probability.   ISSN: 1083-589X 	 | 
	 |