|
|
|
| | | | | |
|
|
|
|
|
On Subordinators, Self-Similar Markov Processes and Some Factorizations of the Exponential Variable
|
Jean Bertoin, Universite Pierre et Marie Curie Marc Yor, Universite Pierre et Marie Curie |
Abstract
Let $xi$ be a subordinator with Laplace
exponent $Phi$, $I=int_{0}^{infty}exp(-xi_s)ds$ the so-called
exponential functional, and $X$ (respectively, $hat X$) the self-similar Markov
process obtained from $xi$ (respectively, from $hat{xi}=-xi$) by Lamperti's
transformation. We establish the existence of a unique probability measure
$rho$ on $]0,infty[$ with $k$-th moment given for
every $kinN$ by the product $Phi(1)cdotsPhi(k)$, and
which bears some remarkable
connections with the preceding variables. In particular we show that if $R$ is an independent
random variable with law
$rho$ then $IR$ is a standard exponential variable, that the function
$ttoE(1/X_t)$ coincides with the Laplace transform of
$rho$, and that $rho$ is the $1$-invariant distribution of the sub-markovian
process $hat X$.
A number of known factorizations of an exponential variable are shown to be of the preceding
form $IR$ for various subordinators $xi$.
|
Full text: PDF
Pages: 95-106
Published on: November 5, 2001
|
Bibliography
-
M. Barlow, J. Pitman and M. Yor (1989). Une extension multidimensionnelle de
la loi de l'arcsinus Séminaire
de Probabilités XXIII, pp. 275-293, Lecture Notes in Math., 1372, Springer, Berlin.
Math. Review
91c:60106 .
-
J. Bertoin (1996).
Lévy processes . Cambridge University Press.
Math. Review 98e:60117 .
-
J. Bertoin (1999). Subordinators: Examples and Applications.
Ecole d'été de Probabilités de St-Flour , pp. 1-91, Lect. Notes in
Maths 1717, Springer, Berlin.
Math. Review CMP 1 746 300 .
- J. Bertoin and M.-E. Caballero (2001). Entrance from $0+$
for increasing semi-stable Markov processes. To appear in Bernoulli .
- J. Bertoin and
M. Yor (2001). Entrance laws of self-similar Markov processes and exponential
functionals of Lévy processes. To appear in Potential Analysis .
- P. Carmona, F. Petit and M. Yor (1994). Sur les fonctionnelles exponentielles
de certains processus de Lévy. Stochastics and Stochastics Reports 47, 71-101.
Math. Review 2001f:60047 .
- P. Carmona, F. Petit and M. Yor (1997). On the distribution and asymptotic
results for exponential functionals of Levy processes. In: M. Yor (editor) Exponential
functionals and principal values related to Brownian motion, pp. 73-121. Biblioteca de la
Revista Matematica Iberoamericana.
Math. Review 99h:60144 .
- P. Carmona, F. Petit and M. Yor (2001). Exponential
functionals of Lévy processes.
O. Barndorff-Nielsen, T. Mikosch and
S. Resnick (editors). Lévy processes: theory and applications, pp. 41-55,
Birkhauser.
- H. K. Gjessing and J. Paulsen (1997). Present value
distributions with application to ruin theory and stochastic equations.
Stochastic Process. Appl. 71, 123-144.
Math. Review 99b:60068 .
- M. Gradinaru, B. Roynette, P. Vallois, and M. Yor (1999). Abel
transform and integrals of Bessel local times. Ann. Inst. H. Poincaré Probab. Statist.
35, 531-572.
Math. Review 2000i:60085 .
- J. W. Lamperti (1972). Semi-stable Markov processes. Z.
Wahrscheinlichkeitstheorie verw. Gebiete 22, 205-225.
Math. Review 46 #6478 .
- G. Letac (1985). A characterization of the Gamma distribution. Adv. Appl. Prob. 17, 911-912.
Math. Review 87b:62016 .
- J. Pitman and M. Yor (1997). On the lengths of excursions of some Markov
processes. Séminaire
de Probabilités XXXI, pp. 272-286, Lecture Notes in Math., 1655, Springer, Berlin.
Math. Review 98j:60108 .
- J. Pitman and M. Yor (1997). On the relative lengths of excursions derived
from a stable subordinator. Séminaire de Probabilités XXXI, pp. 287-305, Lecture
Notes in Math., 1655, Springer, Berlin.
Math. Review
99a:60083 .
- D. N. Shanbhag and M. Sreehari (1977). On certain self-decomposable
distributions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38,
217-222.
Math. Review 55 #9214 .
- D. N. Shanbhag and M. Sreehari (1979).
An extension of Goldie's result and further results in infinite divisibility. Z. Wahrsch.
Verw. Gebiete 47, 19-25.
Math. Review 80e:60023 .
- D. Williams (1979).
Diffusions, Markov processes, and martingales vol. 1:
Foundations. Wiley, New-York.
Math. Review 80i:60100 .
|
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|