A functional limit theorem for a 2d-random walk with dependent marginals
Nadine Guillotin-Plantard, Université Lyon 1 Arnaud Le Ny, Université Paris Sud
Abstract
We prove a non-standard functional limit theorem
for a two dimensional simple random walk on some randomly oriented
lattices. This random walk, already known to be transient, has
different horizontal and vertical fluctuations leading to
different normalizations in the functional limit theorem, with a
non-Gaussian horizontal behavior. We also prove that the
horizontal and vertical components are not asymptotically
independent.
P. Billingsley.
Convergence of probability measures.
2nd edition, Wiley, New York, (1999).
MR1700749
M. Campanino and D. Pétritis.
On the physical relevance of random walks:
an example of random walks on randomly oriented lattices
"Random walks and geometry", V. Kaimanovitch (ed.), Walter de Gruyter (2004), 393--411.
MR2087791
M. Campanino and D. Pétritis.
Random walks on randomly oriented lattices.
Mark. Proc. Rel. Fields9 (2003), 391-412.
MR2028220
C. Dombry and N. Guillotin-Plantard.
Discrete approximation of a stable self-similar stationary increments process.
To appear in Bernoulli (2008).
N. Guillotin-Plantard and A. Le Ny.
Transient random walks in dimension two.
Theo. Probab. Appl. 52, No 4 (2007), 815--826.
H. Kesten and F. Spitzer.
A limit theorem related to a new class of self similar
processes.
Z. Wahrsch. Verw. Gebiete 50, (1979), 5--25.
MR0550121
J.F. Le Gall.
Mouvement Brownien, processus de
branchement et superprocessus. Notes de Cours de DEA, Ecole
Normale Supérieure.
Available on the website of E.N.S., rue
d'Ulm, département de mathématiques (1994).
D. Revuz and M. Yor.
Continuous martingales and Brownian motion.
Springer (1991).
MR1083357